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ABSTRACT
We investigate the use of logged user interaction data—queries and
clicks—for offline evaluation of new search systems in the con-
text of counterfactual analysis. The challenge of evaluating a new
ranker against log data collected from a static production ranker
is that new rankers may retrieve documents that have never been
seen in the logs before, and thus lack any logged feedback from
users. Additionally, the ranker itself could bias user actions such
that even documents that have been seen in the logs would have
exhibited different interaction patterns had they been retrieved
and ranked by the new ranker. We present a methodology for in-
crementally logging interactions on previously-unseen documents
for use in computation of an unbiased estimator of a new ranker’s
effectiveness. Our method is very lightly invasive with respect to
the production ranker results to insure against users becoming
dissatisfied if the new ranker is poor. We demonstrate how well
our methods work in a simulation environment designed to be
challenging for such methods to argue that they are likely to work
in a wide variety of scenarios.
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1 INTRODUCTION
Implicit feedback such as user clicks has long been an important
signal for measuring the effectiveness of search engines. Such sig-
nals have advantages over more traditional explicit feedback such
as relevance judgments in that they are available at low cost for
engines running at scale; they are collected in a natural setting;
they reflect a more personal notion of relevance than typically used
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in relevance judging. Thus they have become widely-used metrics
for online A/B testing and interleaving experiments.

However, there are problems with purely online evaluation.
There is the risk of user attrition if results being deployed are worse
than users expect. In addition, the time it takes to get sufficient
feedback may be prohibitive—in large-scale web search engines it
may not be a problem, but in settings where traffic is much lower
or in which there are daily or weekly periodicity effects, it could
take several weeks to obtain enough of the implicit feedback to be
confident in a decision. Finally, users’ behavior may be biased in
unpredictable and hard-to-control ways.

Thus there has been recent interest in using historical log data
for offline learning and evaluation. This has its own challenges. In
particular, due to strong biases for users to click top-ranked results
and for the engine itself to influence user clicks, a click can rarely
be interpreted sans context. Furthermore, when new approaches to
ranking result in entirely new documents being retrieved, historical
log data has limited use in evaluation.

Some of the most recent work on this topic has investigated
it from the perspective of counterfactual analysis, which asks the
question “what would users have done had they seen this alternative
ranking?” For example, one recent work by Joachims et al. [15] uses
inverse propensity weighting to train rankers from historical log
data. The method requires some degree of randomization of results
to remove position bias; while this randomization carries the same
risk of user attrition mentioned above, the method Joachims et al.
present is meant to minimize the amount of perturbation necessary
so that most users will see most results as intended.

In this paper we build on Joachims’ et al.’s work to extend it to
evaluating new rankers that can retrieve never-before-seen docu-
ments. Since these rankers may retrieve more (or fewer) relevant
documents than the production ranker, we must assume that they
are capable of biasing user behavior just as display position is. And
since they may retrieve entirely new documents, we need a way
to collect some incremental feedback on those documents without
perturbing the production ranker results too much so that we are
able to accurately compare rankers’ effectiveness.

Our proposed methodology requires a set of alternate rankers
along with a production ranker to curate a reusuable offline dataset.
The curated dataset consists of a set of logs with user feedback
along with propensity estimates to debias the logs. In spirit, the
idea is similar to how TREC creates a resuable test collection using
a pool of rankers [30]. The primary contribution of this work are
these methods to curate an offline dataset, which allow comparisons
of new rankers to each other and to the production ranker.

As a secondary contribution, we introduce a full simulation
environment for rigorous testing of offline evaluation methods that
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use historical log data. Our simulations allow the generation of runs
of varying effectiveness and user models that can produce very
noisy click data—as real users do. We demonstrate the effectiveness
of our methods even in this adversarial simulation environment.

This paper is organized as follows. In Section 2 we discuss related
work on online evaluation and counterfactual analysis. In Section 3
we describe our propensity weight-based method. In Section 4 we
present our simulation models, and Section 5 presents experimental
results and analysis. We conclude in Section 6.

2 RELATEDWORK
In this section, we discuss prior work on evaluating retrieval sys-
tems online and offline using implicit feedback. We start by dis-
cussing the use of clicks for IR evaluation, then briefly describe the
challenges in using clicks for evaluation and efforts to overcome
them. Finally, we discuss the relation of our work to counterfactual
inference and off-policy evaluation in reinforcement learning.

2.1 Online evaluation using implicit feedback
Implicit feedback such as clicks, dwell times, etc. can be obtained
at a low cost when users are interacting with the search system in
a natural environment, thus making them a valuable resource to
be used as proxy for relevance. In recent years, substantial effort
has gone into leveraging clicks for the evaluation and optimization
of retrieval systems. Joachims et al. [13] were among the first to
propose a methodology to incorporate click data in learning to rank
algorithms. Early efforts in using clicks for evaluation include mod-
els to combine clicks along with editorial judgments to predict the
performance of new retrieval systems [1, 3, 23]. A/B testing has also
long been in use in online web search and recommendation [17].

While implicit feedback has several advantages, incorporating
clicks in practice is challenging, as pointed out by a landmark
study conducted by Joachims et al. [14]. They investigated the
accuracy of clicks through a user study and concluded that clicks
can be valuable although biased and care must be taken to handle
certain biases. Studying bias in click data has received considerable
attention with researchers pointing out different types of biases
including presentation bias [14], attractiveness bias [33], and trust
bias [16]. Along with different biases, missing judgments is a major
problem in using historical click data for offline evaluation of new
systems [31].

2.2 Handling bias in implicit feedback
A commonly used approach to handle bias in click data is to model
user’s behavior when interacting with a ranked list (i.e. predict the
likelihood of clicking on a document given a ranked list). These
models can also be used to minimize the effect of the bias in click
data. Early work on click modeling includes work by Richardson et
al. [28] and Craswell et al. [8]. Richardson et al. primarily used two
features—document position and query-document relevance—to
propose a position bias model, whereas Craswell et al. [8]’s model
assumes a user who scans the ranked list from the top to bottom
and clicks on a relevant document when encountered. Since then
several click models have been proposed, most of them based on
probabilistic graphical models [10, 5] (also see Chuklin et al. [6] for
a complete overview).

Randomization is another technique used to handle bias in click
data. Radlinski et al. [26] introduced a minimally invasive technique
to infer unbiased preference by randomly swapping documents
at different ranks. Similarly, interleaving approaches that merge
documents originating from different rankers were proposed by
Chapelle et al. [4] . The interleaving methods consists of two step:
(1) merging two or more rankers before presenting to the user;
(2) interpreting interactions on the interleaved results. Several ap-
proaches to merge results from different rankers and corresponding
methods to estimate system performance has been proposed in the
literature, including team-draft interleaving [27], probabilistic in-
terleaving [12], etc. (see [11] for a complete overview). The main
difference between our work and the interleaving techniques is
that our randomization is less invasive; the chances of a bad ranker
affecting user experience is lower in our case compared to interleav-
ing. Also, the primary goal of interleaving methods is to reliably
detect preferences between different rankers in an online setting
whereas our goal is to de-bias the production logs in order to use
them in an offline setting.

2.3 Counterfactual evaluation
The problem of evaluating retrieval system using historical click
logs is similar to off-policy evaluation in reinforcement learning.
In this setting, the goal is to evaluate new retrieval systems (of-
ten referred to as target policy) that retrieve a ranked list different
from a production system S0 using the production logs. In other
words, the value of the target policy S1 must be estimated given a
set of logs consisting of a query, ranked list and a reward ⟨q, S, r ⟩.
Common methods used to solve this estimation problem include di-
rectly estimating the reward r given set of logs (click modeling) [6],
de-biasing the logs using randomization and Inverse Propensity
Weighting [19, 2], and a hybrid method that combines both (often
referred to as doubly robust estimation [9]).

More recently, Joachims et al. [15] proposed an approach based
on counterfactual inference to deal with position bias in produc-
tion logs. They computed propensity scores for each clicked rank
position in the logs and use the propensities to learn a model that is
robust to biased feedback. A more invasive randomization scheme
was proposed by Wang et al. [31] in the context of personal search.
All of these approaches are based on Inverse Propensity Weighting
that was originally developed in the field of causal inference [29].
Our paper builds on these works to estimate propensities using
randomization; however, unlike prior work, our approach can be
used to evaluate new systems that could rank document unseen
before in the production logs.

2.4 Relation to offline evaluation
In our work, the way we prioritize new document for feedback is
similar in spirit to the pooling techniques and low cost evaluation
methods proposed in offline IR evaluation literature. Pooling tech-
niques propose a way to carefully choose a subset of documents
to be judged by a human assessors and broadly they fall into two
categories: static-sampling based [25, 24, 32] and active-sampling
pooling [18, 20, 21, 7]. Our methods are similar to static methods;
however, in our case there are no human assessor and we rely on
click information that are noisy and incomplete.
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3 INVERSE PROPENSITY SCORES
As mentioned above, our work is based on inverse propensity
weighting, in particular the method introduced by Joachims et
al. [15] that uses click feedback on individual documents and esti-
mates propensities from per-rank marginal clickthrough rates. We
adopt the following notation:

• L is a log;
• ℓ ∈ L is a line in the log consisting of the tuple ⟨qℓ , Sℓ , sℓ⟩;
– qℓ is a query or more generally a context consisting of a
query and user profile;

– Sℓ is a vector of document IDs (the ranked list);
– sℓ is a vector of observed rewards (clicks on documents in
Sℓ );

• rank(d |S,q) or rank(d |S,q) is the rank of document d in the
ranked list S (produced by ranker S) for context q;

• f (·) is a function that will be applied to ranks (see below);
• pr is the propensity of users to click at rank r , that is, the
unbiased marginal click-through rate on rank r .

The effectiveness of a ranker S can be estimated using inverse
propensity scoring (IPS):

V̂I PS (S) =
1
|L|

∑
ℓ∈L

∑
d ∈Sℓ

f (rank(d |S,qℓ)) · sd
prank(d |Sℓ,qℓ )

The only difference from Joachims et al., other than notation, is
that they used rank(d |S,q) in the numerator directly, whereas we
are applying a function to the rank. The function represents the
contribution of the rank of the document to a (linear and additive)
IR effectiveness measure such as precision or DCG. Assuming clicks
are positively correlated with relevance, it is straightforward to
show that the expected value of V̂I PS (S) is proportional to the
effectiveness measure that f (rank) represents; the proof directly
follows that of Joachims et al. so we omit it.

3.1 Evaluating a new ranker
For the sake of simplicity, suppose there is a static “production
ranker” S0 that has been in use for some time and has generated a
large log. With that log and proper propensity estimation methods
(discussed in more detail below), V̂I PS (S0) can be used to com-
pute an unbiased estimator of

∑
f (rank) for any re-ranking of the

documents that S0 ranks for the contexts represented in the log.
But consider a new ranker S1 that could potentially rank new

documents for which we have no previous historical interaction
data. In this case the estimator above would be biased; even assum-
ing propensities do not change with the ranker, the new ranker
can be evaluated using only the documents it retrieved in common
with the production ranker and therefore its effectiveness will be
relatively underestimated.

As well, there is no reason to assume that propensities would not
change with the ranker. In the formulation above, the propensities
are marginal clickthrough rates over all contexts. Since our question
is whether we should replace the production ranker with a newly-
developed ranker, and the counterfactual is what users would have
done had we taken that action, we must consider propensities as a
function of system effectiveness as well as rank position.

To address the latter problem, we define propensity as pS,r : the
propensity to click on documents retrieved by ranker S at rank r ,

and re-write the estimator as:

V̂I PS (S) =
1
|L|

∑
ℓ∈L

∑
d ∈Sℓ

f (rank(d |S,qℓ)) · sd
pS,rank(d |Sℓ,qℓ )

Then to estimate these propensities, we introduce a new logging
policy described below. When implemented, this new policy will
also provide logged data that we can use to compute an unbiased
estimator of the new ranker.

3.2 Estimating propensities
Estimating propensities requires unbiased data. They can not gen-
erally be estimated from raw search logs, as there are at least two
major sources of bias present:

(1) position bias, which means that users are much more likely
to click on documents near the top of the ranking, regardless
of relevance, than documents ranked lower;

(2) system effectiveness bias, which means clickthrough rates
may be biased by how effective the ranker is at retrieving
relevant documents.

(Note that system effectiveness bias does not mean that better
rankers result in higher clickthrough rates; better rankers could
actually lead to lower clickthrough rates as users are more likely to
be satisfied by a single result.)

In order to unbias results, we follow Joachims et al. in introducing
some small amount of randomization into search results. The way
this randomization is done is through a logging policy.

3.2.1 Logging policies. We present two different policies for
randomizing results for logging. The first directly follows Joachims
et al.: we select one rank as an “anchor” and then randomly select
another rank with which to swap documents. This ensures that
every document retrieved will be shown at the anchor rank the
same number of times (in expectation), allowing us to compute the
unbiased clickthrough rate for that ranker and that rank position.
Using that data we can compute unbiased clickthrough rates for
any rank position. We call this the “swap policy” and apply it to the
production ranker results such that a small percentage of overall
traffic sees results randomized in this way. Traffic selected for the
swap policy is logged in a separate “swap log”.

Specifically, the propensity at the anchor rank is computed from
the swap log as:

pS0,k =
total clicks on all documents at k

|L|

At each rank i , k , there are two possible documents that can ap-
pear: the one originally ranked at position i , and the one originally
ranked at position k . Measuring the clickthrough rate on these two
documents at both ranks i and k (weighting by the relative number
of times they appeared at those ranks), then taking the ratio of
those two quantities, gives an estimate of the relative decrease in
clickthrough rate from rank i to k is the propensity for rank i .

The second policy, which is our contribution, is the “insertion
policy”, used to collect feedback on previously-unseen documents.
Similar to the swap policy, we select an anchor rank; this is the
only position in the ranked list that will be changed. We then
select a document unranked by the production ranker but ranked
by one of the new rankers we want to evaluate to place in that
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position, replacing the document at the anchor rank with that one.
We compute unbiased clickthrough rate at this position using the
weighted sum of logged clicks on documents ranked by the new
ranker (weighted by how often they appeared, as those that it has
in common with the production ranker will have been seen more
than its new documents). We use this to similarly compute unbiased
clickthrough rates for all other positions for the same ranker. A
small percentage of overall traffic will see results randomized this
way, and that traffic logged in a separate “insertion log”.

Since precise estimates may require a great deal of log data, we
smooth them using simple Laplacian plus-one smoothing. This acts
as a regularization that overestimates propensity at low ranks.

3.3 Using logged data to estimate effectiveness
After the swap and insertion policies have been active for some
time, we will have three separate logs:

(1) the production ranker logs, which we treat as static such
that the ranked results for a given context are identical every
time that context appears;

(2) the swap log, in which each line has at most one pair of
documents swapped: the one at the anchor rank with one at
another randomly-selected rank;

(3) the insertion log, in which each line has at most one new
document at the anchor rank, selected randomly from those
retrieved by a new ranker.

Let L,LS ,LI denote these three logs (respectively). For the pur-
poses of computing the IPS estimator for the production ranker S0,
L andLS can be combined, as they rank the same set of documents
for each context. The insertion log LI contains new documents not
previously seen in S0 ranked results.

The production ranker, or any new ranker that simply reranks
documents ranked by the production ranker S′

0, can be evaluated
using the IPS estimator:

V̂I PS (S0) =
1

|L ∪ LS |

∑
ℓ∈L∪LS

∑
d ∈Sℓ

f (rank(d |S0,qℓ)) · sd
pS0,rank(d |Sℓ,qℓ )

Anew rankerS1 that can take new actions (rank new documents)
is evaluated by using the logsL andLS to estimate the contribution
of all documents that it ranked in common with the production
ranker, then adding to that an estimator based on LI to include the
contribution of the new documents it ranked.

V̂I PS (S1) =
1

|L ∪ LS |

∑
ℓ∈L∪LS

∑
d ∈Sℓ

f (rank(d |S1,qℓ)) · sd
pS1,rank(d |Sℓ,qℓ )

+
1

|LI |

∑
ℓ∈LI

∑
d ∈Sℓ

f (rank(d |S1,qℓ)) · sd
pS1,rank(d |Sℓ,qℓ ) · πd,qℓ

Note that rank(d |S1,qℓ) requires logic for what to do when docu-
ment d on line ℓ of the log has not been ranked by S1. We define it
to be 0 in these cases.

Note also that we have introduced a new parameter: πd,qℓ is the
inclusion probability of document d ranked by S1 for query qℓ but
not byS0 for the same query. Since such documents can only appear
at the anchor rank, any given line of the log can only have one new
document. If we do not re-weight documents to account for this,
these documents will have an outsized effect on the estimator. Thus

πd,qℓ is the probability that document d is selected for insertion
from all the new documents ranked for qℓ . (For documents at ranks
other than the anchor rank, the inclusion probability would be 1.)

This raises another question: how do we assign πd,qℓ ? We ad-
dress that in Section 3.5 below; before that, we describe the f ()
function in more detail.

3.4 Reward
Joachims et al. reward a click on a document by the rank at which
that document occurs, so that the expected value of the estimator is
the sum of the ranks of relevant documents. We can generalize by
applying a function to the rank, similar to the way IR effectiveness
measures are based on functions of the ranks at which relevant
documents appear.

In particular, if we define f (rank) as:

fP@K(rank) = 1
K if rank ≤ K ; 0 otherwise

then the expected value of the estimator will be proportional to
precision at K . Likewise, if we define f (rank) as:

fDCG(rank) = 1
log2(rank+1)

if rank ≤ K ; 0 otherwise

then its expected value is proportional to DCG@K . (Note that
it is hard to capture nDCG: since we have no explicit relevance
judgments we cannot compute the ideal DCG and therefore cannot
normalize DCG values. We may be able to estimate the ideal DCG
using clicks from the swap and insertion logs but we leave this for
future work.)

3.5 Sampling documents
Finally we turn to the inclusion probabilities πd,qℓ introduced in
Section 3.3. We consider two ways to estimate these:
Uniform Sampling — just selects a document to insert uniformly
at random from those in the set of documents retrieved by new
rankers and not by the production ranker for each query qℓ .
Informative Sampling — works by assigning sampling probabil-
ities to documents according to their effect on the difference in
effectiveness between two rankers. Consider two rankers S0 and
S1 that we are evaluating by DCG@10. We are interested in the
comparative evaluation: which ranker is more effective? In other
words, is the difference in DCG greater than zero, or less?

10∑
k=1

fDCG(k) · reldS0,k−
10∑
k=1

fDCG(k) · reldS1,k > 0

From this formulation we can see that a document which has been
ranked at the same position in both rankers has no effect on the
difference in DCG. The effect of a document ranked at position k0
in S0 and k1 in S1 is fDCG(k0) − fDCG(k1).

We compute this quantity for every document, for every pair of
runs, and take the maximum value for each document.

wd = max
Si ,Sj

| fDCG(ki ) − fDCG(kj )|

Then the sampling probability for d is wd∑
d wd

.
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4 SIMULATION MODELS
We design our experiments around simulation of queries, rankers,
and user interactions. This allows us to control for more potential
confounding factors in a more precise way. Of course, simulation
models and parameters could be confounding factors themselves.
We intend to be clear about our decisions and implementations
so that even if the reader disagrees, they are able to re-do our
experiments with their own choices.

4.1 Simulating queries
The primary characteristic of queries that concerns us is the rele-
vance of documents retrieved for the query. This is very simple to
simulate; we just pick a random number of documents that rankers
could retrieve—essentially a simulated pool—then from that set pick
a random subset to be relevant. We generate pools of size 10 to
100 (chosen uniformly at random) and use 0.25 as a parameter for
assigning relevance to documents in the pool.

4.2 Simulating rankers
When simulating rankers, we want to make sure we are generating
some that are similar in effectiveness and some that are further apart.
To simulate ranker Sj , we first select a parameter ηj uniformly at
random from the set {20, 21, 22, 23, 24}. This parameter will directly
influence the ranker’smean effectiveness. For each queryq in the set
of simulated queries described above, we sample a value ηj,q from
a normal distribution centered on ηj with variance proportional
to √

ηj . This parameter will influence the ranker’s effectiveness on
this query and ensure that no two rankers are exactly identical.

We then choose a value K , the max rank to which the ranker will
be evaluated. For each rank k ∈ [1,K], we sample a relevance value
from a multinomial distribution with probabilities proportional to
{0 + ηj,q , 1 + ηj,q , 2 + ηj,q , ...}. Thus the larger ηj,q is, the “flatter”
the multinomial distribution is, creating a greater chance to sample
a lower relevance grade. In other words, ηj is inversely correlated
with ranker effectiveness. After sampling a relevance grade, we
sample (uniformly without replacement) a document with that
grade to place at rank k . The empirical mean precisions at 10 of
rankers generated this way are 0.60, 0.57, 0.53, 0.50, 0.49 for the
five respective η values.

With this process, any two runs i, j with ηi , ηj will show
a statistically significant difference in effectiveness over enough
queries. Because of simulated noise on individual queries, two runs
with ηi = ηj are not likely to have identical mean effectiveness
over a query set, but should not be found statistically significantly
different (this would be a Type I error). Two rankers with “adjacent”
η parameters (that is, | log2 ηi − log2 ηj | = 1) will have enough
variance that they may not be easily distinguishable. Thus we can
analyze results on pairs of rankers that are more different versus
pairs that are more similar in effectiveness.

Table 1 shows empirical statistical significance rates (by a paired,
two-tailed t-test at the 0.05 level) for pairs of runs with all combina-
tions ofη parameters. As expected, the rate of statistical significance
when ηs are equal is within the Type I error rate of 0.05. Adjacent
η values give higher significance rates, and distant η values give
rates of 1.

η 20 21 22 23 24

20 0.00 0.99 1.00 1.00 1.00
21 – 0.05 0.81 1.00 1.00
22 – – 0.02 0.67 1.00
23 – – – 0.04 0.34
24 – – – – 0.04

Table 1: Rate of detecting statistical significance in pairs of
rankers generated with η parameters given on the column
and row.
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Figure 1: Observed clickthrough rates in the Yahoo Web-
scope log compared to a geometric model of user examina-
tion and clicks.

4.3 Simulating users
Our user model is based on the rank-biased precision model intro-
duced by Moffat et al. [22]. We simulate users proceeding down a
ranked list position-by-position, inspecting the result at each posi-
tion, deciding whether to click it or not, and then deciding whether
to continue to the next result or abandon the current query.

The probability of seeing a result is geometric in its rank:

P(examine result at rank k |θ ) = θk−1 · (1 − θ )

We model the decision of a user to click or not as binomial
conditional on the relevance of the result: P(click|R ≥ 1) versus
P(click|R = 0).

Then we have:

P(click at rank k |θ ,Rdk ) = P(click |Rdk ) · θ
k−1

In this workwe setθ = 0.25, P(click |Rdk ≥ 1) = 0.4 and P(click |Rdk =
0) = 0.2. Note that this is significantly more noise than previous
papers on this topic have used in simulations. Our geometric model
with high probability of abandonment means that very few users
will see results below rank 5, and our low click probabilities mean
that even fewer will click those results. We chose to use the geo-
metric model due to its simplicity and ability to reflect real user
behavior (see below). Alternatively, we could have used any of the
user models proposed in [6].

4.3.1 User model validation. We use the Yahoo Webscope L18
search log data1, which consists of anonymized queries, ranked
results, and clicked positions, to validate our model and parameters.

We found θ ≈ 0.25 to be the best fit parameter for the geometric
family. Figure 1 compares the best-fitting geometric model with
the observed clickthrough rates.
1Available at http://webscope.sandbox.yahoo.com, under Language Data

http://webscope.sandbox.yahoo.com
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Users recorded in the Webscope log are likely to click on doc-
uments that have been rated “bad” by editors. In particular, “bad”
documents at rank 1 have an empirical clickthrough rate of 0.5
and 0.14 at rank 2 (note that this is a good fit to the geometric
model with θ = 0.25. Similarly, users are more than willing to pass
over non relevant documents; documents rated “excellent” have
a clickthrough rate of 0.44 at rank 1 compared to 0.12 at rank 2
(again note the correspondence to the geometric model). Overall
clickthrough rate for relevant documents (of any grade, including
perfect) at rank 1 is 0.59, dropping to 0.1 at rank 2, because perfect
documents account for a very large share of clicks.

It is surprising that “bad” documents actually have higher click-
through rates than “excellent” documents at the same rank (we
decline to hypothesize why this might be the case). Since the goal
of our experiments is to estimate effectiveness measures in the
presence of noise and missing feedback, we do require some posi-
tive correlation between relevance and clicks. For this reason we
choose not to model the relatively high clickthrough rate on “bad”
documents. Despite this, we believe that our model is sufficiently
simulating the amount of noise present in real online evaluation
settings, even if not simulating users in those settings with high
fidelity.

4.4 Simulating an online testing environment
Finally, we simulate an online testing environment as follows. One
of the simulated rankers is chosen as the production ranker (essen-
tially randomly; there is no guarantee that any of the new rankers
will be more effective than the production ranker). The simulation
then proceeds in a loop. At each iteration, one query is selected
randomly from the set to simulate a user submitting that query to
the ranker. For the first 100,000 iterations, there is a 1% chance that
the query is diverted to the swap policy and the user sees ranked
results with two positions swapped. The other 99% of the time the
user will see the original ranked results.

After the first 100,000 iterations, there remains a 1% chance of
diverting to the swap policy, but there is an additional 1% chance
of diverting to the insertion policy. In this case, the query is run
against all of the simulated new rankers2. All new documents—
those retrieved by new rankers but not by the production ranker—
are identified and then one is chosen for insertion using one of the
methods described in Section 3.5 above. This document is placed at
anchor rank, replacing the document from the production ranker.

We use rank 2 for the anchor rank in both the swap and insertion
policies. We believe this is better than using rank 1 because it does
not risk replacing “perfect” documents with a poorer result.

4.5 Discussion
Simulations have disadvantages and advantages. One advantage of
our simulation approach is that we can use the models to compute
“gold standard” propensities and IPS estimators to compare our
own to, and we can compute effectiveness measures on rankers to
compare the IPS estimators to. This allows us to argue about the
effectiveness of our approach in settings with similar degrees of
noise and query abandonment.

2In practice all results have been pre-generated and cached for fast retrieval.

In particular, we can compute propensity at any rank k for any
ranker S as:

pS,k =
RS

N
p(click |R ≥ 1)θk−1 +

N − RS

N
p(click |R = 0)θk−1

and compare our estimates against these values. Here RS is the
number of relevant documents retrieved by S (across all queries)
and N is the total number of documents retrieved (which in our
simulations is the same for all rankers). This means propensity is
directly and positively correlated to ranker effectiveness.

This raises a disadvantage of our simulation model, which is that
in real rankers there is probably not a direct positive correlation
between propensity and effectiveness. Furthermore, it is likely that
user abandonment and click probabilities are influenced by other
relevant documents in the ranking; we likewise do not capture this.
Note that previous work on this topic also does not capture these
factors; this is something we intend to investigate in future work.

Another possible disadvantage is that we do not simulate “head
queries” vs “tail queries”, as all queries are equally likely to be
sampled. We consider them to be more-or-less representative of
“torso queries”, i.e. those that are not unlikely to appear in a stream
and do not exhibit the typical characteristic of head queries of very
high clickthrough rate at rank 1. Our approach should have no issue
with tail queries; for those queries there will be little information
in the log for the production and new rankers alike. Furthermore,
preliminary experiments suggest that a more realistic distribution
for query sampling is actually easier for our methods.

In general, we believe that the simulation and evaluation param-
eters we have chosen create an experimental environment that is
more challenging for IPS methods than would actually be found in
reality. We claim that if our methods do well in this environment,
they are likely to work well in real settings as well.

5 EXPERIMENTS AND RESULTS
We experiment by simulating the full test environment described
above. Table 2 summarizes simulation parameters; for justifications
of these choices see Section 4. We evaluate rankers by precision@K
and DCG@K and use Kendall’s tau rank correlation to compare the
ranking of rankers by those two measures to the ranking by the
corresponding IPS estimate. We performed at least 10 iterations for
each of the experiment below and report the mean value.

We have no clear baseline to compare to, since as far as we know
this is the first work to investigate the evaluation of previously un-
seen rankers using log data without explicit relevance judgments.
Looking at evaluation over the first 100,000 log lines is the best
comparison to previous work such as Joachims et al., since in that
epoch we are applying their method directly. Thus our first experi-
ment validates that we have implemented that work correctly and
compares our user model to theirs.

5.1 Evaluating production rankings and
re-rankings

Joachims et al.’s work can be used to evaluate re-rankings of logged
results. To verify that we have correctly implemented that work, we
show results when estimating DCG@5 for 10 different re-ranking al-
gorithms. We compare results using our geometric user model with



Offline Comparative Evaluation with Incremental, Minimally-Invasive Online Feedback SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

component parameter value
queries number of queries 1000

pool size Cq Cq ∈ {10...100}
number relevant ∼ Binom(Cq , 0.25)

users θ 0.25
p(click |R ≥ 1) 0.4
p(click |R = 0) 0.2

traffic % to swap policy 1%
% to insertion policy 1%

logs lines before starting insertions 100,000
total log lines 9,000,000

policies anchor rank 2
swap rank selection uniformly random

Table 2: Simulation parameters used in experiments.
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Figure 2: Kendall’s tau correlations between DCG@5 and
its IPS estimator for 10 rankers that re-rank the same 5
documents. This figure compares taus under two different
user simulation models: the reciprocal rank model used by
Joachims et al. and our geometric model.

noisy clicks to their user model, which has propensities inversely
proportional to rank.

As Figure 2 shows, bothmodels achieve higher correlations to the
“true” ranking of rankers with more log data, though the reciprocal
rank model starts out very high and only increases marginally
with more data. The geometric model requires much more data to
accurately estimate propensities because they are much smaller at
low ranks than the inverse rank model. So while our results are in
some sense “worse” in this figure, it is entirely because we chose
to use a much more difficult user model—a choice we did not have
to make. We argue that this allows us to make stronger statements
about the generalizability of both methods to a variety of scenarios.

5.2 Evaluating new rankings
Our main experimental results are about evaluating new rankings.

Figure 3 shows results when the goal is to evaluate runs by
precision at ranks 3, 5, and 10; Figure 4 shows the same for DCG at
3, 5, and 10. All six plots show the same pattern: an initial period of
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Figure 3: Kendall’s tau correlation for the ranking by preci-
sion at K (top K = 3, middle K = 5, bottom K = 10) versus
the ranking by the V̂IPS estimate of precision. Each line rep-
resents a maximum log size to use; for example, the 1M line
uses propensities estimated from one million log lines and
ends after the millionth line. Correlation is computed every
10,000 log lines.

moderate but stable tau correlationwhen no documents are inserted.
Then, as new documents are inserted, we observe a steep drop in
tau values due to lack of sufficient data for the inserted documents.
Finally, as more and more data is acquired the tau values increases
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Figure 4: Kendall’s tau correlation for the ranking by DCG
atK (topK = 3, middleK = 5, bottomK = 10) versus the rank-
ing by the V̂IPS estimate of DCG. Each line represents a max-
imum log size to use; for example the 1M line uses propensi-
ties estimated from one million log lines and ends after the
millionth line. Correlation is computed every 10,000 logs.

fast and eventually slows down as sufficient data is acquired for
the inserted documents. Each plot shows results for logs of size
varying from one million lines (about 20,000 swaps and insertions)
up to nine million lines (about 180,000 swaps and insertions). For
ranks 3 and 5, it is clear that one million is not enough, but by the
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Figure 5: Differences in Kendall’s tau correlation for the
ranking by precision@3 versus the ranking by the V̂IPS
estimator of precision, comparing a weighted sampling
function to uniform sampling. Left: using the precision-
based weighting function increases Kendall’s tau by a small
amount. Right: using the DCG-based weighting function in-
creases Kendall’s tau by a larger amount.

time the log size is three million lines, a correlation to ground truth
of 0.9 has been achieved, and more lines than that seems to make
little difference beyond marginally increasing the correlation.

Effectiveness at rank 10 is much harder to estimate due to the
very low propensity at that rank. It is easier to estimate DCG@10
than precision@10; this is because DCG@10 weights rank 10 less
than precision@10 does. It is interesting that the smallest log gives
the best results early on. This seems to be because the smaller log
gives more “conservative” propensity estimates (due to smoothing)
that have less chance of severely mis-ranking the systems.

5.2.1 Effect of weighted sampling for insertions. Figure 5 shows
the effect of using weighted sampling for insertions as described
in Section 3.5. While there is a positive effect on Kendall’s tau
correlations in the first million log lines, it is not large and highly
variable, and the effect all but disappears after the first million lines.
DCG-based sampling gives better results initially than precision-
based sampling, but also hurts correlations more after the first one
million lines.

5.2.2 Analysis by magnitude of difference in effectiveness. As
mentioned in Section 4.2 above, our rankers are generated specif-
ically so that some pairs will be very close in effectiveness (not
statistically distinguishable) and others will have a large enough
difference in magnitude to be statistically significant. In this section
we break rankers out by their η parameter in order to investigate
how much of the errors in rank correlation are due to the fact that
rankers with identical ηs are essentially tied.

Figure 6 shows accuracy of the IPS prediction of the sign of the
difference in effectiveness as a function of length of the log for one
experiment (corresponding to “5M log lines” in the middle plot in
Figure 3). Each line corresponds to pairs of rankers with equal or
“adjacent” η parameters (that is, | log2 ηi − log2 ηj | ≤ 1), as these
are the pairs most likely to be mis-ranked. Pairs of rankers with
larger differences are very unlikely to be mis-ranked; accuracy on
those pairs exceeds 99% even with very few log lines.

It is clear from this figure that errors in rank correlation are
primarily driven by pairs of rankers that are not statistically differ-
entiable from each other, and secondarily by pairs of rankers with
higher variability in effectiveness.
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Figure 7: Kendall’s tau correlation for 10 rankers ranked by
precision@5 versus the IPS estimate of precision@5 based
on a log of fivemillion lines. Rankerswere simulated to have
on average only one document in common for each query.

5.2.3 Analysis by similarity of retrieved documents. New rankers
are often quite similar to old rankers, retrieving many documents
in common. Our results above use rankers that have about 60-70%
of documents in common for each query. Figure 7 shows results
when rankers have on average only one document in common.
Since there are so many new documents to get feedback on, it takes
much longer for the correlation to recover from the initial drop,
only reaching its original value after more than two million lines.
Thus decisions about how much traffic to route to the insertion
policy should be partially based on how similar the rankers are in
terms of the documents they retrieve.

5.2.4 Propensity estimation error. Figure 8 compares estimated
propensity to the true value calculated as described in Section 4.5
and shows how the estimates improve with more data. With only
100,000 lines, estimates at ranks 1–5 are good, but propensities are
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Figure 8: Comparisons of “true” propensity to estimated
propensity. The upper two plots show propensity estimated
after 100,000 log lines; the middle two after 1,000,000 log
lines; and the lower two after 9,000,000 log lines. The left
three plots show propensity for the production ranker; the
right three for one of the new rankers (selected randomly).

highly overestimated after that due to smoothing and lack of data.
After 1,000,000 lines, estimates are quite good down to rank 7, and
after 9,000,000 lines estimates are accurate to rank 9. This shows
that the amount of data required for good estimates increases faster
than linearly with rank; we estimate it would take another several
million lines to have a good estimate at rank 10.

5.2.5 Evaluating real rankers. Finally, in order to validate our
methodology using “real” ranking algorithms, we evaluated nine
learning-to-rank algorithms based on a labeled dataset. We used
the MSLR-WEB10K dataset that contains editorial judgments for
query-document pairs on a 4 point scale with 10K queries3. All
nine rankers were trained using the train set and the results on
the test set were used for simulations 4. The average overlap be-
tween the systems is about 0.42. One ranker was treated as the
production system and logs were generated using the methodology
in Section 4.4. The experiment was repeated 10 times with each
of the nine rankers as the production system. Figure 9 shows the
Kendall’s tau correlation for nine systems ranked by DCG at 5 using
editorial judgments versus system ranking by the V̂IPS estimate of
DCG. Since these systems are less similar to each other than our
simulated rankers, it takes longer to recover from the initial drop
when beginning the insertion policy than in Figures 3 and 4, but
not as long as Figure 7.
3https://www.microsoft.com/en-us/research/project/mslr/
4Multiple Additive Regression Trees (MART, RankNet, RankBoost, AdaRank, Coor-
dinate Ascent, LambdaMART, ListNet, Random Forests and Linear Regression were
trained using using RankLib with the default setting for the parameters

https://www.microsoft.com/en-us/research/project/mslr/
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6 CONCLUSION
Building on the work of Joachims et al., we have introduced a
method for collecting incremental implicit online feedback for the
purpose of offline evaluation of rankers that can retrieve never-
before-seen documents. Our method attempts to answer the coun-
terfactual question “how would users have interacted with a new
ranker had we fully deployed it?” without the risk of A/B testing
or even interleaving a poorly-performing ranker. The amount of
perturbation of production ranker results is minimal, as we only
ever change one or two rank positions.

We tested our method through simulation and showed that,
under some basic assumptions about the relationship between rele-
vance and clicks, we are able to reliably distinguish rankers even
in a difficult, noisy experimental setting with about 1 million log
lines, of which only 2% go to light perturbation policies—though the
total amount depends on how similar the rankers are to each other.
More intelligent prioritization of documents to sample for feedback
further improves the signal although only by a small amount.

We also showed the limits of the method: for measures like
precision@10 that weight all ranks equally, the high variance in
propensity estimates at low ranks make it much more difficult to
distinguish between rankers. Furthermore, a user model that has
a very small chance of generating clicks at low ranks makes the
propensity estimation at these ranks much harder.

We intend to continue this work by further relaxing assumptions
and improving the models. In particular, it has been observed that
the relevance of results at higher ranks can affect user behavior
at lower ranks; this has implications for propensity estimation. It
may also be the case that more intelligent swapping and insertion
policies can result in faster conclusions about differences between
rankers. Most importantly, we plan to test these methods in a real
on-line setting, specifically in rankers designed for music retrieval
and recommendation.

REFERENCES
[1] R. Agrawal, A. Halverson, K. Kenthapadi, N. Mishra, and P. Tsaparas. Generating

labels from clicks. WSDM ’09. 2009.
[2] L. Bottou, J. Peters, J. Q. Candela, D. X. Charles, M. Chickering, E. Portugaly,

D. Ray, P. Y. Simard, and E. Snelson. Counterfactual reasoning and learning
systems - the example of computational advertising. Journal of Machine Learning
Research (), 2013.

[3] B. Carterette and R. Jones. Evaluating search engines by modeling the relationship
between relevance and clicks. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis,
editors, NIPS, pages 217–224. 2008.

[4] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and
analysis of interleaved search evaluation. Trans. Inf. Systems, 30(1):6:1–41, 2012.

[5] O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search
ranking. 2009.

[6] A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Synthesis
Lectures on Information Concepts, Retrieval, and Services, 7(3):1–115, 2015.

[7] G. V. Cormack, C. R. Palmer, and C. L. a. Clarke. Efficient construction of large test
collections. ACM, New York, New York, USA, Aug. 1998.

[8] N. Craswell, O. Zoeter, M. J. Taylor, and B. Ramsey. An experimental comparison
of click position-bias models. WSDM, page 87, 2008.

[9] M. Dudík, D. Erhan, J. Langford, and L. Li. Doubly Robust Policy Evaluation and
Optimization. Statistical Science, 29(4):485–511, 2014.

[10] G. E. Dupret and B. Piwowarski. A user browsing model to predict search engine
click data from past observations. In Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’08, pages 331–338, 2008.

[11] K. Hofmann, L. Li, and F. Radlinski. Online Evaluation for Information Retrieval.
Foundations and Trends® in Information Retrieval, 10(1):1–117, 2016.

[12] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method for inferring
preferences from clicks. In Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM ’11, pages 249–258, 2011.

[13] T. Joachims. Optimizing search engines using clickthrough data. conference on
Knowledge discovery and data mining, 2002.

[14] T. Joachims, L. a. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evalu-
ating the accuracy of implicit feedback from clicks and query reformulations in
Web search. ACM Transactions on Information Systems, 25(2):7–es, 2007.

[15] T. Joachims, A. Swaminathan, and T. Schnabel. Unbiased Learning-to-Rank with
Biased Feedback. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining - WSDM ’17, 2017.

[16] M. T. Keane and M. O’Brien. Click Models for Web Search. In Proceedings of the
Annual Meeting of the Cognitive Science Society, volume 28, 2006.

[17] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled ex-
periments on the web: Survey and practical guide. Data Min. Knowl. Discov.,
18(1):140–181, 2009.

[18] D. Li and E. Kanoulas. Active Sampling for Large-scale Information Retrieval
Evaluation. arXiv.org, pages 49–58, Sept. 2017.

[19] L. Li, S. Chen, J. Kleban, and A. Gupta. Counterfactual Estimation and Optimiza-
tion of Click Metrics in Search Engines - A Case Study. pages 929–934, 2015.

[20] A. Lipani, J. R. M. Palotti, M. Lupu, F. Piroi, G. Zuccon, and A. Hanbury. Fixed-Cost
Pooling Strategies Based on IR Evaluation Measures. ECIR, 2017.

[21] D. E. Losada, J. Parapar, and A. Barreiro. Feeling lucky? - multi-armed bandits for
ordering judgements in pooling-based evaluation. SAC, pages 1027–1034, 2016.

[22] A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effec-
tiveness. ACM Trans. Info. Sys., 27(1):1–27, 2008.

[23] U. Ozertem, R. Jones, and B. Dumoulin. Evaluating new search engine configura-
tions with pre-existing judgments and clicks. In Proceedings of the 20th Interna-
tional Conference on World Wide Web, WWW ’11, pages 397–406, 2011.

[24] V. Pavlu and J. Aslam. A practical sampling strategy for efficient retrieval evalua-
tion. 2007.

[25] V. Pavlu, E. Yilmaz, J. A. Aslam, and H. Ave. A Statistical Method for System
Evaluation Using Incomplete Judgments. pages 541–548, 2006.

[26] F. Radlinski and T. Joachims. Minimally invasive randomization for collecting
unbiased preferences from clickthrough logs. In Proceedings of the 21st National
Conference on Artificial Intelligence - Volume 2, AAAI’06, 2006.

[27] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect
retrieval quality? In Proceedings of the 17th ACM Conference on Information and
Knowledge Management, CIKM ’08, pages 43–52, 2008.

[28] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: estimating the
click-through rate for new ads. 2007.

[29] P. R. ROSENBAUM and D. B. RUBIN. The central role of the propensity score in
observational studies for causal effects. Biometrika, 70(1):41–55, 1983.

[30] E. M. Voorhees and D. K. Harman. TREC : Experiment and Evaluation in Informa-
tion Retrieval. MIT Press, 2005.

[31] X. Wang, M. Bendersky, D. Metzler, and M. Najork. Learning to Rank with Selec-
tion Bias in Personal Search. pages 115–124, 2016.

[32] E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple and efficient samplingmethod for
estimating AP and NDCG. In the 31st annual international ACM SIGIR conference,
page 603, New York, New York, USA, July 2008. ACM Request Permissions.

[33] Y. Yue, R. Patel, and H. Roehrig. Beyond position bias: Examining result attrac-
tiveness as a source of presentation bias in clickthrough data. In Proc. of the 19th
International Conference on World Wide Web, WWW, pages 1011–1018, 2010.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Online evaluation using implicit feedback
	2.2 Handling bias in implicit feedback
	2.3 Counterfactual evaluation
	2.4 Relation to offline evaluation

	3 Inverse Propensity Scores
	3.1 Evaluating a new ranker
	3.2 Estimating propensities
	3.3 Using logged data to estimate effectiveness
	3.4 Reward
	3.5 Sampling documents

	4 Simulation models
	4.1 Simulating queries
	4.2 Simulating rankers
	4.3 Simulating users
	4.4 Simulating an online testing environment
	4.5 Discussion

	5 Experiments and Results
	5.1 Evaluating production rankings and re-rankings
	5.2 Evaluating new rankings

	6 Conclusion

