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ABSTRACT
Evaluating algorithmic recommendations is an important, but diffi-
cult, problem. Evaluations conducted offline using data collected
from user interactions with an online system often suffer from bi-
ases arising from the user interface or the recommendation engine.
Online evaluation (A/B testing) can more easily address problems
of bias, but depending on setting can be time-consuming and incur
risk of negatively impacting the user experience, not to mention
that it is generally more difficult when access to a large user base is
not taken as granted. A compromise based on counterfactual analy-
sis is to present some subset of online users with recommendation
results that have been randomized or otherwise manipulated, log
their interactions, and then use those to de-bias offline evaluations
on historical data. However, previous work does not offer clear
conclusions on how well such methods correlate with and are able
to predict the results of online A/B tests. Understanding this is cru-
cial to widespread adoption of new offline evaluation techniques in
recommender systems.

In this work we present a comparison of offline and online eval-
uation results for a particular recommendation problem: recom-
mending playlists of tracks to a user looking for music. We describe
two different ways to think about de-biasing offline collections for
more accurate evaluation. Our results show that, contrary to much
of the previous work on this topic, properly-conducted offline ex-
periments do correlate well to A/B test results, and moreover that
we can expect an offline evaluation to identify the best candidate
systems for online testing with high probability.
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1 INTRODUCTION
Recommender systems are in wide use today, used for everything
from recommending video and music to recommending products
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Figure 1: From idea to A/B test. Only a few ideas can ever be
A/B tested, but offline evaluation is limited only by how fast
we can implement our ideas. It is therefore important that
offline evaluation results accurately reflect A/B test results.

for purchase to recommending things to do and places to go. Recom-
mendation system technology is now in search engines, advertising
services, and even personal fashion assistance.

Many of the use cases for recommendation concern contextual
personalization: getting the right results to the right users at the
right time. Evaluating this, however, can be challenging. Broadly
speaking, there are two ways to evaluate recommender systems:
online, using A/B tests to compare different approaches by their
effect on logged user interactions, and offline, using some log of
historical user interactions under the assumption that the users
of that system would like the same items if they were served by
different approaches.

It is hard to capture context in offline evaluations. Logged in-
teractions are often biased by the user interface and by the rec-
ommendation engine itself: the engine is trained such that it will
prefer certain types of content over others, and the types of content
it prefers will naturally see more user interactions. This could be
alleviated by building test collections with additional human judg-
ments, but that is costly and moreover very difficult to do in a way
that captures the personal nature of recommendations.

Online evaluation is an attractive alternative because it does
not require such strong assumptions about user’s interactions. It
does, however, require a reasonably large user base and some time
to collect enough data to be able to make a decision about the
experimental systems being tested. Furthermore, there is risk in
exposing users to results that are harmful in some way—even if the
harm is just that the user is disinterested and leaves the platform.
Offline evaluation prior to online evaluation can mitigate this by
giving some indication of which experiments are likely to perform
well online and which aren’t.

Even with an initial online evaluation, it is not likely that we
can take everything that performs well offline into an online test.
Figure 1 illustrates the problem: we can often test hundreds of ideas
each week just by changing feature sets and hyperparameters, but
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what we can test online is always limited by time and the size of
the user population. Thus we need an offline evaluation that not
only separates good systems from bad, but can also help us make
reliable decisions about which experimental systems are the best
candidates to test online.

In this work we present a new study showing offline evaluation
results can predict online A/B test results under the right approach
to de-biasing. We present a simulation-based approach to deciding
on the experimental systems with the highest potential for success
in an A/B test. We also demonstrate how offline evaluation can be
used to identify the most promising individual system components
or characteristics.

The rest of this paper is organized as follows. In Section 2 we
review previous and recent work on evaluation in recommender
systems. Section 3 describes our specific problem setting and the
evaluation challenges it presents. In Section 4 we compare offline
and online evaluation results for 12 experimental runs, presenting
analysis on relative rankings, statistical significance, and probability
of identifying the experimental runs that perform best in online
tests. We conclude in Section 5.

2 BACKGROUND
Evaluation of recommender systems has been [21] and still is [19]
an important topic of ongoing research with several open questions.
Since the early work by Resnick et. al [36] in 1994, evaluation has
proceeded from predicting missing ratings of items in an offline set-
ting to complicated models of user satisfaction using implicit online
signals such as clicks, dwell time, etc [14, 13]. Other dimensions
such as novelty, serendipity, diversity, etc. have been considered
for evaluating recommendation quality as well [21, 25, 42, 16].

2.1 Online evaluation
A direct way of measuring recommendation quality is to measure
the consumption of recommended items. In other words, a system
that recommends music should probably focus on how often the
recommendation leads to a stream. In this setting, online A/B tests
are conducted to compare two systems by exposing them to real
users [31]. A predefined metric is used to quantify recommendation
quality (e.g., total stream per session). Recently, more sophisticated
ways of modeling user satisfaction from implicit user feedback such
as clicks, streams, etc. have been proposed in the context of music
recommendations [14] and other domains [26].

Interleaving approaches that merge items from different engines
have been used to limit the risk of poor recommendation [6]. In-
terleaving methods consist of two steps: (1) merging two or more
ranked lists before presenting to the user; (2) interpreting interac-
tions on the interleaved results. Several variants has been proposed
in the literature, including team-draft interleaving [35], probabilistic
interleaving [23], etc. (see [22] for a complete overview).

Reliably comparing systems in an online setting can take a con-
siderable amount of time. In practice, A/B tests might need to be
run for several weeks to get enough data to detect a statistically
significant effect. This is particularly true when there is periodicity
in user behavior that may affect metrics. Further, transforming
every idea into a production-ready system to experiment online is
prohibitively expensive. Thus there is some limit on the number

of A/B tests that can be run depending on the total size of the user
population, the size of samples needed for each cell, and the amount
of time the tests need to run for. Additionally, we likely do not want
to A/B test every potential system we can think of. Many are simply
going to perform poorly, and it would be better to know that in
advance so that we do not risk exposing users to them. Thus, A/B
testing is not suitable for many common evaluation cases.

2.2 Offline evaluation
It is common in the academic study of recommender systems and
search to use offline test collections for experimentation. In search,
the TREC initiative has produced large test collections that are
reliable for testing new models for search. These collections in-
volve a large cost in acquiring human assessments of the relevance
of documents to queries which has traditionally been infeasible
for academics. But they do not require any search systems to be
running online. Instead, they rely on expert assessors to develop
search needs and judge the relevance of documents retrieved by
experimental systems offline [43]. Such collections are rare for rec-
ommender systems because it is difficult for assessors to judge
relevance when it is personal and contextual. However, some re-
cent work has applied ideas from personalized recommendation
to search with experiments on large human-annotated collections
such as the MSLR-WEB30k data [41].

A possible compromise between fully-online and fully-offline
evaluation with test collections is offline evaluation using historical
data collected online. This involves curating a dataset using his-
torical logs generated from users interacting with a recommender
system, including “ground truth” inferred from interactions such
as ratings or clicks. This dataset is used to evaluate experimental
systems in an offline setting, i.e., without having to expose the
experimental system to real users. This has become the favored
approach for offline evaluation of recommender systems.

Early on, the focus was on predicting ratings that the user would
provide to an item. In this setting, error-based metrics such as mean
absolute error (MAE) and root mean squared error (RMSE) are com-
monly used to measure the prediction accuracy. As recommender
systems became more sophisticated with UI advancements, there
was a need to take into account the user’s natural browsing be-
havior [19]. Rank-based metrics that gave more importance to the
top-k results were used to evaluate systems [10, 3, 39]. Metrics such
as precision, recall, and mean-average-precision commonly used in
information retrieval were adopted [1]. Other IR metrics such as
normalized discounted cumulative gain (nDCG) [27] and mean
reciprocal rank (MRR) have also been used to evaluate systems [1].

Incorporating historical log data for evaluation in practice is chal-
lenging due to various biases present. Some of the most common
datasets used in recommender systems research such as MovieLens,
Last.FM, etc [20, 4] suffer from biases due to their UI or underlying
recommendation algorithms, which the researchers have no control
over. Examples of biases include position bias [28] (that users are
more likely to pay attention to top-ranked items even if they are not
as relevant), popularity bias (that many systems have a tendency
to promote more popular content), attractiveness bias [45], trust
bias [30], and what we call “selection bias”, that is the propensity
of the system to lean towards particular types of content due to
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how it was trained or how content is modeled. A commonly used
approach to handle bias in historical log data is to model user’s
behavior when interacting recommendation results and then use
them to minimize the effect of the bias in click data [12, 7, 8].

However, studies have pointed out that error-based, rank-based
and other metrics computed on offline dataset do not correlate
with online evaluation results [2, 38, 15, 17] and researchers have
questioned validity of offline evaluation.

2.3 Counterfactual analysis
Recently, approaches based on importance sampling [24] have been
proposed for evaluating recommender systems in an unbiased man-
ner [32, 41]. The proposed techniques are based on propensity
weighting originally used in causal inference [37], and more re-
cently in other domains such as IR evaluation [29, 44] and computa-
tional advertising [5]. These approaches rely on propensity scores
that are computed and logged. In order to ensure data is collected
on combinations that wouldn’t happen with a production system,
some random exploration is often included.

In this setting, the estimator uses the logs collected using a pro-
duction policy µ to compute the expected reward of a target policy
π . However, the importance sampling estimator and its variants
such as capped importance sampling [5], normalized importance
sampling [34] and doubly robust estimation [11], suffer from high
variance. Swaminathan et al. [40] proposed the normalized capped
importance sampling (NCIS) estimator using control variates to
address this issue. Gilotte et al. [18] successfully demonstrated the
use of NCIS to evaluate recommender systems.

In this work, we present a new study showing offline evaluation
results can predict online A/B test results under the right approach
to de-biasing. We present a simulation-based approach to deciding
on the experimental systems with the highest potential for success
in an A/B test. We also demonstrate how offline evaluation can be
used to identify the most promising individual system components
or characteristics.

3 PROBLEM SETTING
The specific recommendation problem we are considering is illus-
trated in Figure 2: a user comes to a recommender system (in this
case, a music recommendation system) via a mobile interface and is
presented with recommendations for playlists, called cards in this
setting, organized into thematically-related shelves. The user can
scroll up and down to reveal shelves, and left and right within a
shelf to see additional cards.

The presentation of both shelves and cards is personalized to user
and context. One user’s top shelf may not be the same as another
user’s, and within a given shelf, the top cards recommended to
one user may not be the same as those recommended to another
user, and the same user may not see the same layout if they visit
the page a second time. Importantly, the set of cards available
for recommendation on this page is relatively small: about 200
algorithmic or editorially-curated playlists in addition to playlists
from the user’s recent listening history, each of which is manually
assigned to one or more shelves.

In principle, the goal of the personalized recommendation engine
is to assemble a layout of shelves and cards that maximizes user

shelf 1

card 1A card 1B …

shelf 2

card 2A card 2B …

shelf 3

card 3A card 3B …

navigation bar

Figure 2: Illustration of a recommender system mobile in-
terface that organizes recommendations into “shelves” of re-
lated “cards”. Users can scroll left and rightwithin shelves to
reveal more cards, and up and down to reveal more shelves.
satisfaction. This problem is made more tractable in practice by
assuming that cards can be selected independently of one another
as well as independently of shelves, and the full layout can be
assembled post hoc from a simple ranking of cards. Thus the goal
of the personalized recommendation engine is to learn a reward
function f : C × X → R that accurately predicts the likelihood
of a user engaging with a recommended card c ∈ C for a given
context x ∈ X. Given that reward function, we wish to identify a
policy π (C = c |x ∈ X) for picking a card to be presented to the
user/context x such that total reward V =

∑
i f (ci ,xi ) · π (ci |xi ) is

maximized. In this work, we adopt a contextual bandits approach
similar to the one proposed by McInerney et al. [33]. A contextual
bandit requires that we specify a reward model, a representation
of context x , an action space, and a policy for selecting an action
given a context.

The reward model we currently use is impression-to-stream, that
is, whether a card was seen by the user, and if so, whether the user
streamed at least one track from the playlist represented by the
card for at least 30 seconds. This is a binary rather than real-valued
reward, which we use for simplicity; we note that it can be replaced
by more complex measures of user satisfaction.

The context is essentially the user request. It is typically repre-
sented using features such as user demographic characteristics, the
time of the request, the affinity the user has for particular tracks,
the user’s recent play history, and other contextual features.

The action space is the set of cards C.We simplify the problem by
assuming that the set of cards for the context is static1. Furthermore,
we have a set of manual constraints specifying the cards that are
to be grouped into each shelf. Shelves are not explicitly part of
the action space; instead, the policy is based on a machine-learned
model that scores cards and uses those scores along with the shelf

1In reality this is not the case, as new items can become available for recommendation
and old ones can be rotated out. This is a direction we wish to explore in the future.
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constraints to rank shelves. In this way the selection of shelves
follows deterministically from the scoring of cards2.

There are several factorswe canmanipulate to optimize impression-
to-stream rate: the feature sets that represent the user context, the
particular machine learning models that score cards, the way a
model is instantiated and optimized, the model hyperparameters,
and so on. Identifying the best combination of variables for a rec-
ommendation policy demands a reliable evaluation methodology.

3.1 Online evaluation
Different approaches to selecting the factors listed above can be
compared by a set of A/B tests: given several possible sets of factors,
a test cell is configured for each one and each user is randomly
assigned to a test cell or to a control group. Users in a particular test
cell see recommendations based on a particular policy, with about
1% of users assigned to each cell. We record relevant information
about cards (such as features, scores, shelves, etc.) and user interac-
tions (impressions, streams, etc). After some time has passed we
can compare each test cell on various metrics. As mentioned above,
our reward is impression-to-stream, so impression-to-stream rate
is the metric we are interested in.

3.2 Offline evaluation with historical logs
The offline evaluation problem is to estimate mean reward V =
1
n
∑n
i ri · π (ci |xi ) using a historical log of length n.

We obtain historical logs from systems running in production.
Production systems are performing some level of exploration, which
is captured in the policy. As we described in Section 2.2, these logs
are biased; in order to use them for offline evaluation, they need to
be de-biased in some way. We explore three estimators for V :

(1) the inverse propensity score estimate, also known as the
importance sampling estimate (IS);

(2) a capped importance sampling estimate (CIS);
(3) a normalized and capped importance sampling estimate

(NCIS).
In each case, the system being logged has a particular policy which
we call the logging policy and denote µ(ci |xi ). The goal of offline
evaluation is to estimate the value of a new target policy π to be
evaluated against the logging policy µ.

3.2.1 Importance sampling. The importance sampling estimator
for V is based on re-weighting rewards by the propensity weight,
which is the ratio of the target policy probability to the logging
policy probability. In particular:

VIS =
1
n

n∑
i=1

ri ·
π (ci |xi )

µ(ci |xi )

This estimator is unbiased in expectation, but its variance is high,
as it grows polynomially with the size of the action space.

3.2.2 Capping propensities. When propensities are taken from
a production log that is performing exploration, some values may
be very low because random exploration produces layouts that
are unlikely to be selected otherwise. These low propensities can
have an outsized effect on the estimator. For example, if a card

2Although the policy may allow for some random exploration as well.

selected by the logging policy with propensity 0.001 has much
higher probability of being selected by the target system—say 0.5
or more—the reward for that card could be multiplied by a factor
of over 500. This is particularly a problem when interactions are
sparse, as just a handful of low-propensity cards that received a
user stream end up dominating the estimator.

One way to solve this problem is to cap the propensity weight
π (ci |xi )
µ(ci |xi )

. The capped importance sampling (CIS) estimator intro-
duces a parameter λ which is the maximum value we allow the
propensity weight can take:

VCIS =
1
n

n∑
i=1

ri ·min
(
λ,

π (ai |xi )

µ(ai |xi )

)
3.2.3 Normalizing the estimator. Another common technique

to reduce variance is to normalize the CIS estimator by the sum
of the propensity weights. This is normalized capped importance
sampling (NCIS):

VNCIS =

1
n
∑n
i=1 ri ·min

(
λ, π (ci |xi )µ(ci |xi )

)
1
n
∑n
i=1min

(
λ, π (ci |xi )µ(ci |xi )

)
Note that while VIPS is unbiased in expectation, VCIS and VNCIS

introduce bias in order to help control variance and to allow the
use of more of the data from production logs.

3.2.4 Fully-shuffled logs. Finally, a completely orthogonal way
to address bias is by making sure some subset of users see recom-
mendations unbiased by the UI or the recommendation engine. The
simplest way to do this is to simply shuffle the cards and show users
a completely random layout. This ensures that over the group of
users exposed to this treatment there is no bias from the UI or from
the engine. This randomization comes at a cost: the user experience
is almost certainly going to be worse, and that may translate to
longer-term losses. We can therefore only send a small fraction of
traffic to fully-shuffled results.

3.3 Deciding on systems to test online
Aswewrote above, not all experiments that can be tested offline can
or should be tested online. A good offline evaluation should help us
select those that are the best candidates for online testing. Since our
goal is to improve recommendations overall, the best candidates
for online testing are the systems that perform the best in offline
evaluations, so we want our offline evaluations to be reliable.

We adopt a separate policy for selecting experiments to test.
This policy is based on simulating an offline evaluation over many
different logs to determine which experiments are most likely to
rank highly. Since variance is high, we do not necessarily expect
the same experiments to consistently rank at the top; given a distri-
bution of positions in a ranking for each experiment, we can sample
from this distribution experiments to deploy in A/B tests.

As noted above, all of the offline evaluations are done using a
single log. This means the estimated rewards of experiments are
highly correlated: two experiments are more likely than not to
preserve their ordering relative to one another when evaluated
against a new sample offline. We can assume rewards are sampled
from some distribution that captures this correlation, then simulate
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new evaluations by sampling from that distribution repeatedly and
seeing which systems come out on top.

We assume a multivariate normal distribution with mean vector
µ̂ estimated from the mean estimated rewards from a large offline
evaluation and covariance matrix Σ̂/n estimated from the covari-
ance between each pair of experiments and divided by the log size.
Mean estimated reward r is sampled from the normal distribution:

r ∼ N(µ̂, Σ̂/n)

The simulated ordering experiments is the ordering of sampled
rewards. Comparing simulated rankings over many of these tri-
als, we can estimate a probability distribution over ranks for each
experiment in the evaluation.

4 EXPERIMENT
In this section we present results and analysis of offline experiments
on different recommendation algorithms with the goal of selecting
the best subset for online testing.

4.1 Playlist recommendation algorithms
We compare 12 different recommendation methods. Algorithms
differ on three dimensions:

• feature set used (two different feature sets);
• source of training data (raw biased logs vs. logs debiased by
the NCIS estimator vs. fully-shuffled logs);

• hyperparameter values and modeling decisions.
We number experiments 1–12. Experiment 1 is the baseline.

These algorithms were tested online for a period during the
summer of 2018. We have logs from these online tests, as well as
logs from production systems that are not identical to these A/B
tested systems. We also have a small log of user traffic that saw
fully-shuffled results as described above.

4.2 Metrics and gold standard
Evaluation of the online tests is by impression-to-stream rate, which
is 1 if a card was seen by a user and at least one track from the
corresponding playlist was streamed for at least 30 seconds, and 0
if the card was seen but no track was streamed for 30 seconds. We
denote this V . The online test results are the gold standard.

An offline evaluation is attempting to estimate what impression-
to-stream rate would have been had the target policy been deployed.
We use the VIS, VCIS, VNCIS estimators defined above.

When reporting results, we normalize impression-to-stream rate
and its estimates by the baseline (experiment 1) value, so that the
baseline experiment will always receive a score of 1.000 in each on-
line and offline evaluation. The other experiments will be evaluated
by how many times better they are than the baseline.

4.3 Statistical testing
Here we briefly discuss statistical testing. Typically an A/B test is
started with the goal of detecting a statistically significant effect
when it is finished. Since A/B tests are done online by randomly
sampling the user population to receive the treatment or control
groups, the correct statistical testing procedure is a two-sample or
unpaired test. Offline experiments, on the other hand, are done by
computing the metric repeatedly on the same historical sample, and

stat. signif. vs experiment
exp V std.err×105 n/106 1 2 3 4 5 6 7 8 9 10 11 12
1 1.000 0.132 47.51 · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

2 1.167 0.147 45.07 ⋆ · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

3 1.340 0.153 47.36 ⋆ ⋆ · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

4 1.380 0.158 45.91 ⋆ ⋆ ⋆ · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

5 1.386 0.158 46.41 ⋆ ⋆ ⋆ ⋆ · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

6 1.391 0.157 46.86 ⋆ ⋆ ⋆ ⋆ · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

7 1.421 0.157 47.96 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · ⋆ ⋆ ⋆ ⋆ ⋆

8 1.453 0.166 43.84 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · ⋆ ⋆ ⋆ ⋆

9 1.472 0.163 45.83 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · ⋆ ⋆ ⋆

10 1.487 0.162 47.12 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · ⋆ ⋆

11 1.494 0.162 47.07 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · ⋆

12 1.559 0.164 47.81 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ·

Table 1: Relative ordering of 12 experimental systems tested
online, measured by howmany times better the impression-
to-stream rate is to the baseline experiment 1. The grid of⋆s
indicates statistical significance: a pair of experiments (i, j)
are statistically significantly different if and only if there is
a ⋆ in cell (i, j) in the grid.

thus statistical significance testing can be done offline using one-
sample or paired tests. Paired tests have the advantage of requiring
fewer samples to find a significant effect.

The t-test is a common test that has both unpaired and paired
variants, but sometimes criticized for requiring the data to conform
to a normal distribution. An alternative is the bootstrap test, which
involves sampling with replacement from the data to form a distri-
bution of the mean. Bootstrapping is slow when sample sizes are
large, so we would like to avoid bootstrapping if we can. To validate
whether we could rely on the much more computationally efficient
t-test, we compared bootstrap estimates of mean and variance to
standard frequentist estimates. There is no difference between them,
meaning we incur no loss in validity by using the t-test.

4.4 Online vs offline evaluation
Table 1 shows the relative ordering of experimental cells after the
online test by normalized impression-to-stream ratio, along with
statistical significance (by a two-sample t-test) between each pair
of experiments. We consider this the “gold standard”. Each online
test is attempting to match this table as closely as possible.

4.4.1 Offline evaluation with CIS and NCIS. Table 2 shows the
relative ordering of experimental cells by one baseline offline evalu-
ation setting using the CIS estimator with a high cap (λ =1,000,000)
and no normalization. Since the cap is so high, this is similar to an
un-capped estimate. We note the following:

(1) The ordering of experiments differs substantially from the
online experiment. The Kendall’s τ rank correlation between
the two is 0.424. This is not statistically significant, which
means we cannot rule out the possibility that the offline
evaluation is just ordering experiments randomly.

(2) Sample size is identical for every experiment. This is because
each experiment is evaluated using the same offline data.

(3) Standard errors in this table are much higher than in Table 1:
Table 1 reports standard errors ×105, while this table reports
them ×101—the latter are 104 times larger than the former!
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stat. signif. vs experiment
exp VCIS std.err×10 n/106 1 3 2 9 6 8 5 7 12 11 10 4
1 1.000 0.262 1.34 · · · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

3 1.447 0.205 1.34 · · · · · ⋆ · ⋆ ⋆ ⋆ ⋆ ⋆

2 1.450 0.167 1.34 · · · · · · · ⋆ ⋆ ⋆ ⋆ ⋆

9 1.522 0.195 1.34 · · · · · · · · ⋆ ⋆ ⋆ ⋆

6 1.539 0.229 1.34 · · · · · · · · · ⋆ ⋆ ⋆

8 1.906 0.268 1.34 ⋆ ⋆ · · · · · · · · · ⋆

5 1.945 0.263 1.34 ⋆ · · · · · · · · · ⋆ ·

7 1.981 0.261 1.34 ⋆ ⋆ ⋆ · · · · · · · · ·

12 2.008 0.266 1.34 ⋆ ⋆ ⋆ ⋆ · · · · · · · ·

11 2.126 0.272 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ · · · · · · ·

10 2.603 0.339 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ · ⋆ · · · · ·

4 2.608 0.288 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · · · · ·

Table 2: Relative ordering of 12 experimental systems evalu-
ated offline by the CIS estimate (λ = 106) of howmany times
better the impression-to-stream rate is to the baseline, with
statistical significance outcomes.

stat. signif. vs experiment
exp VCIS std.err×10 n/106 1 6 3 5 9 12 2 7 8 11 10 4
1 1.000 0.014 1.34 · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

6 1.968 0.019 1.34 ⋆ · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

3 2.089 0.020 1.34 ⋆ ⋆ · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

5 2.369 0.022 1.34 ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9 2.386 0.021 1.34 ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

12 2.434 0.021 1.34 ⋆ ⋆ ⋆ · · · · · ⋆ ⋆ ⋆ ⋆

2 2.510 0.022 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ · · · · ⋆ ⋆ ⋆

7 2.528 0.022 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ · · · · ⋆ ⋆ ⋆

8 2.600 0.022 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆

11 2.762 0.023 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · ⋆

10 2.824 0.024 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · ⋆

4 3.167 0.025 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ·

Table 3: Relative ordering of 12 experimental systems evalu-
ated offline by the CIS estimate (λ = 100) of howmany times
better the impression-to-stream rate is to the baseline, with
statistical significance outcomes.

(4) Because the standard errors are so much higher, statistical
significance signals are lost en masse. Thirty-seven pairs that
were significantly different in the online evaluation are not
significant in the offline evaluation.

(5) The best experiment by the online evaluation—experiment
12—is only 4th-best by the offline evaluation, and is statisti-
cally indistinguishable from the 5th-worst experiment.

(6) The best experiment by the offline evaluation—experiment
4—is 4th-worst by the online evaluation.

Table 2 represents one possible case for the offline evaluation
with de-biased data. Table 3, with λ = 100 and no normalization,
represents something close to a worst-case scenario. The ranking
is inaccurate (Kendall’s tau correlation of 0.333), the best experi-
ment by the online gold standard is ranked in the middle, and the
fourth-worst experiment is ranked highest. Yet the confidence in
results is high: most pairs are thought to be statistically signifi-
cantly different from one another. Table 4, with normalization and
λ = 105, represents a much better outcome. The ranking is more
accurate (Kendall’s tau of 0.636, which is significant), and moreover
the best two experiments are ranked in the top two positions. The

stat. signif. vs experiment
exp VNCIS std.err×10 n/106 1 2 4 7 5 10 3 9 6 8 12 11
1 1.000 0.102 1.34 · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

2 1.454 0.065 1.34 · · · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

4 1.495 0.064 1.34 · · · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

7 1.745 0.089 1.34 ⋆ · · · · · · · ⋆ ⋆ ⋆ ⋆

5 1.934 0.101 1.34 ⋆ · · · · · · · · · · ⋆

10 2.073 0.105 1.34 ⋆ ⋆ ⋆ · · · · · · · · ·

3 2.154 0.118 1.34 ⋆ ⋆ ⋆ · · · · · · · · ·

9 2.168 0.108 1.34 ⋆ ⋆ ⋆ · · · · · · · · ·

6 2.346 0.135 1.34 ⋆ ⋆ ⋆ ⋆ · · · · · · · ·

8 2.540 0.138 1.34 ⋆ ⋆ ⋆ ⋆ · · · · · · · ·

12 2.589 0.133 1.34 ⋆ ⋆ ⋆ ⋆ · · · · · · · ·

11 2.684 0.133 1.34 ⋆ ⋆ ⋆ ⋆ ⋆ · · · · · · ·

Table 4: Relative ordering of 12 experimental systems eval-
uated offline by the NCIS estimate (λ = 105) of how many
times better the impression-to-stream rate is to the baseline,
with statistical significance outcomes.

confidence in results is much lower as well; if we can believe that
the 11th experiment could be the best, experiments 10, 3, 9, 6, 8, and
12 are all within the confidence interval of experiment 11 and thus
could have a claim to being the best as well. This group contains
the actual 5 best experiments, though it also contains one clear
miss (experiment 3). Counterintuitively, the lower confidence (rep-
resented by wider confidence intervals) gives us greater confidence
that this offline evaluation is providing results that are usable.

Figures 3a and 3b showTable 3 and 4 (respectively) as scatterplots.
The discrepancies in ordering from the former evaluation are easy
to see, as are the narrow confidence intervals that make nearly every
pair look significantly different. In contrast, the latter evaluation
clearly indicates the uncertainty present from evaluating offline,
suggesting immediately which experiments are in contention.

It is important to understand the interpretation of the confidence
bars in these figures. Note in the right figure that the confidence
intervals for experiment 2 and experiment 6 overlap by a small
amount, but in Table 4, experiment 2 is statistically significantly
worse than experiment 6. This is because non-overlapping confi-
dence intervals is a sufficient but not necessary condition for statis-
tical significance. In the offline case, the sample data is the same for
both experiments, which means we can use a one-sample (paired)
test. This means that the confidence interval used for statistical
testing is the confidence interval on the difference in means, not
the intervals on the means themselves. It is certainly possible that
two confidence intervals on means could be overlapping, yet the
confidence interval on the difference in means does not contain 0.

4.4.2 Offline evaluation with shuffled data. We also wanted to
try to verify the use of fully-shuffled data for offline evaluation.
Table 5 shows the relative ordering of experiments by an evaluation
over fully-shuffled logs only, with theVIS estimator with no capping
and no normalization. The sample size in this case is quite small:
only 6,285 sessions that had at least one user impression. As a result
the variance is much higher than the online case. Note that the
standard errors shown in this table are three orders of magnitude
larger than those in Table 1. This translates to fewer experiment
pairs being found statistically significantly different: 20 pairs that
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(a) VCIS with λ = 100. Kendall’s τ = 0.325.
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(b) VNCIS with λ = 100, 000. Kendall’s τ =
0.636.
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(c)VIS computed on fully-shuffled logs only.
Kendall’s τ = 0.394.

Figure 3: Three plots comparing online and offline evaluations with different estimators.

stat. signif. vs experiment
exp VIS std.err×102 n 1 6 3 9 2 5 12 4 10 8 11 7
1 1.000 0.165 6,285 · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

6 1.147 0.177 6,285 · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

3 1.289 0.187 6,285 ⋆ · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9 1.490 0.201 6,285 ⋆ ⋆ · · · · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

2 1.646 0.211 6,285 ⋆ ⋆ ⋆ · · · · · ⋆ ⋆ ⋆ ⋆

5 1.721 0.215 6,285 ⋆ ⋆ ⋆ · · · · · ⋆ ⋆ ⋆ ⋆

12 1.864 0.224 6,285 ⋆ ⋆ ⋆ ⋆ · · · · · ⋆ ⋆ ⋆

4 1.944 0.228 6,285 ⋆ ⋆ ⋆ ⋆ · · · · · · · ⋆

10 2.057 0.235 6,285 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · · · · ·

8 2.209 0.243 6,285 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · · · ·

11 2.283 0.247 6,285 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · · · ·

7 2.390 0.253 6,285 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · · · ·

Table 5: Relative ordering of 12 experimental systems tested
offlinewith shuffled data,measured by howmany times bet-
ter the impression-to-stream rate is to the baseline experi-
ment 1, with statistical significance outcomes.

had been statistically significantly different in the online evaluation
are no longer significant (by a one-sample t-test).

The ranking of experiments is also substantially different. The
best system and the 7th-best system by the online evaluation swap
positions so that the 7th-best is ranked best by the offline evaluation.
The Kendall’s τ rank correlation between the two is only 0.3943.
This is not statistically significant, which means that we cannot rule
out that the offline evaluation is just producing a random shuffling
of experiments.

Figure 3c compares the online and offline evaluation with shuf-
fled logs. It is evident from the plot that the correlation is not very
strong, and moreover the error bars do not give us much confidence
that more data would improve the result.

4.5 Deciding on systems to test online
In this section we use the simulation-based policy described in Sec-
tion 3.3 to identify the systems with highest probability of providing
good online results. We sample from the multivariate normal distri-
bution fit to offline evaluation results, then transform the resulting
simulated means to rank positions.

3A τ correlation of 1 means perfect correspondence in the ranking; -1 means the
rankings are reversed. A τ of 0 is a random re-ordering.

Figure 4 shows the probability that each system is identified as
the “best” over 100,000 simulations of an offline evaluation. The
left plot is with no normalization; the right plot uses normalization.
Both plots have as their x-axis the log10 of the value used for cap-
ping propensities. The assignment of point types to experiments is
identical to Figure 3.

Figure 4 clearly shows the importance of normalization. Without
it, only experiments 4, 10, and 11 are ever in contention. The actual
best experiment—experiment 12—never exceeds 0.01 probability of
being identified as best. The right plot, with normalization, shows
more variety. With low cap values, experiment 7 is favored, but
experiment 11 (the second best overall) quickly rises and remains
most likely to be identified as best for cap ≥ 1. As cap increases over
10,000, experiment 12 (the actual best) takes some of the probability
mass along with experiments 8 and 6.

Note that Figure 4 is only showing the probability of each exper-
iment being identified as best. We could also look at distributions
for second- and third-best. Figure 5 shows plots for the second- and
third-best experiments. For second-best, at high cap values we have
experiments 6, 8, 11, and 12 in contention. For third-best, exper-
iments 8, 12, 6, 11, 9, 3, and 10 are in contention. Though we do
note that there is not a very high probability of the actual third-best
experiment ranking third or higher in an offline evaluation.

4.6 System components and characteristics
In Section 4.1 we noted that our 12 experiments used two different
feature sets and three different sources of training data. In this
section we investigate whether we can reliably identify the best
feature set and the best source of training data separately from the
experimental systems.

The specific groupings are as follows:

• feature set 1: experiments 1, 2, 4, 11, and 12.
• feature set 2: experiments 3, 5, 6, 7, 8, 9, and 10.
• trained on biased data: experiments 1 and 11.
• trained on shuffled data: experiments 3, 7, 8, and 10.
• trained on de-biased (by NCIS) data: experiments 2, 4, 5, 6, 9,
and 12.

To try to predict which feature set or which source of training data
is best, we use the same method as above, but collapse predictions
by grouping samples by either feature set or training data source.
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Figure 4: Probability of each experiment being identified as “best” as capping parameter increases (shown on the x-axis as the
log10 of the parameter value). The left uses no normalization, the right uses normalization.
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Figure 5: Probability of each experiment being identified as
the second-best (top) and third-best (bottom) as capping pa-
rameter increases, using normalization.

The result for feature set is that there is a 59% chance that the
first feature set is better than the second.It is not surprising that
this result is uncertain, given that both the two best and two worst
experiments used the first feature set.

For training data source the result is clear. There is a 97% chance
that using production log data de-biased by NCIS is the best source
of training data, and only a 0.01% chance that the fully-shuffled
data is. Of course, this is likely because the amount of fully-shuffled
data is very small, as it must be due to the risk of degrading the
user experience.

5 CONCLUSION
We have presented a comparison and analysis of an online eval-
uation via A/B tests and offline evaluation with three different
estimators computed from historical log data. Taking the online
evaluation as the gold standard, we find best results in an offline
evaluation using a normalized and capped estimator based on impor-
tance sampling, with a relatively high capping parameter providing
the best tradeoff between variance and preserving the relative or-
dering of experiments. We are thus able to use offline evaluation
to predict the results of online evaluation more accurately than
previous work.

Our analysis illustrates that problems arising from both bias
and variance in offline estimators are mitigated by the practical
considerations of identifying the right experiments to A/B test
and failing to miss good experiments. Variance may be high for
the offline estimator of an individual experiment, but because the
practical concern is whether one experiment is better than another
and by how much, the variance we are more concerned with is the
variance in the difference in the estimator. And because the two
experiments are evaluated using the same sample, that variance
is typically lower than the variance of either of the experiments
separately. Similarly, while capping and normalization may add
bias to the estimator, as long as the bias does not affect the relative
ordering of experiments it can be acceptable.

It is worth discussing particular aspects of our problem setting
that may help make the prediction of online test results easier. For
one, the action space we are considering is relatively small—200
cards—compared to other settings. For another, we are assuming
independent rewards, which is likely not the case in reality: the
expected reward of placing one card after another may depend
highly on which card is placed first. This may also explain some of
the discrepancy between the online and offline results.

There are a number of directions for future work. Gilotte et al.
proposed additional refinements to the NCIS estimator they call
piecewise and pointwise NCIS. We believe these can be refined fur-
ther and adapted to our problem. There is also potential for explor-
ing rank loss functions and metrics. Finally, we plan to perform this
analysis on offline-to-online prediction for other recommendation
problems.
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