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Abstract 

The Generalizability Index for Study Traits (GIST) has been proposed recently for assessing the population 
representativeness of a set of related clinical trials using eligibility features (e.g., age or BMI), one each time. 
However, GIST has not yet been evaluated. To bridge this knowledge gap, this paper reports a simulation-based 
validation study for GIST. Using the National Health and Nutrition Examination Survey (NHANES) data, we 
demonstrated the effectiveness of GIST at quantifying the population representativeness of a set of related trials that 
differ in disease domains, study phases, sponsor types, and study designs, respectively. We also showed that among 
seven example medical conditions, the GIST of age increases from Phase I trials to Phase III trials in the seven 
disease domains and is the lowest in asthma trials. We concluded that GIST correlates with simulation-based 
generalizability results and is a valid metric for quantifying population representativeness of related clinical trials. 

Introduction 

Randomized controlled trials (RCTs) have been widely regarded as the gold standard in medical research [1]. To 
ensure the internal validity of a clinical study when testing the efficacy of a treatment, clinical trialists often use 
restrictive eligibility criteria for participant selection [2]. However, unjustified exclusion criteria may unfairly 
deprive the opportunity of patients to benefit from the trial, and more importantly, compromise the generalizability 
of its results to the real-world patient population [3]. Consequently, many FDA-approved medications were later 
withdrawn from the market due to safety problems that had not been detected in pre-marketing clinical trials but 
only apparent after exposing the medications to a broader patient population [4, 5].  

To assess the population representativeness of clinical trials, researchers may compare the study population of a 
single trial with a convenience sample of the real-world patient population [6, 7]. Most of the generalizability 
assessment studies identified in the literature focus on posteriori generalizability and thus can be conducted only 
after the conclusion and publication of a trial. In contract, priori generalizability, whose focus is on the eligibility of 
participants, can be assessed during trial design. Posteriori generalizability is almost always lower than priori 
generalizability because eligibility criteria always subsume the characteristics of study participants [8]. In addition, 
our previous study found that many trials, especially those on the same medical condition, often use similar or 
identical eligibility criteria, indicating that the generalizability issue may not be only at the individual trial level, but 
also across a whole body of trials for a clinical domain at the research community level [9].  

To facilitate a priori generalizability assessment, a method was recently published for systematically assessing the 
population representativeness of a set of related trials. This method compares the aggregate target populations of all 
the trials under consideration, which characterize the patients who can be enrolled in these trials according to the 
inclusion and exclusion criteria, with the “real-world” patient population from electronic health records (EHRs) 
[10]. The Generalizability Index for Study Traits (GIST) was initially introduced along with this method [10]. This 
paper reports the initial study evaluating the validity and effectiveness of GIST. 

Background 

GIST is a mathematical function for quantifying the collective population representativeness of a set of clinical trials 
with reference to the real-world patient population measured by a single quantitative eligibility feature. There are 
three parameters in the GIST function: i.e., the real-world patient population (PP), the target population (TP) of a 
trial set, and an eligibility feature (not shown in the formula for brevity). The GIST metric is conceptually similar to 
Weisberg et al.’s model of patient selection bias in a trial using a counterfactual framework, which takes into 
account the proportion of patients with an adverse event incidence and the probability of such patients being selected 
by a trial [11]. GIST score ranges between 0 and 1, with 1 being most generalizable and 0 being least generalizable. 
It first discretizes the value range of an eligibility feature into consecutive non-overlapping value intervals and then 
sums the percentage of studies that recruit patients in each interval multiplied by the percentage of patients in the 
real-world population observed in that interval across all the intervals. GIST can quantify the representativeness of 
the target population (TP) for the patient population (PP) with respect to an eligibility feature such as age. The 
mathematical formula of GIST is: 
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where N is the number of distinct value intervals of the quantitative eligibility feature under consideration, T is the 
number of trials in the trial set included for aggregate analysis, P is the number of patients in the patient population 
PP, wj is the inclusion value interval of the quantitative feature for the jth study, such that indicator I can be defined 
as jth

 study interval subsumes the ith interval’s low and high boundary, and yk is the observed value of the quantitative 
feature for the kth patient such that an indicator I can be defined when kth patient has a value of the quantitative 
feature falling within the ith interval. Note that the GIST metric can also be applied to categorical variables, whereby 
the value intervals are integers. 

Methods 

A conceptual framework for validating GIST 

Ideally, the GIST metric can be validated by taking two or more trial sets with known different generalizability with 
respect to an eligibility feature and assessing if the difference in their GIST scores correlates with the expected 
generalizability differences. As illustrated in Figure 1(a), given TP1 and TP2 such that the population 
representativeness of TP1 is known to be better than TP2 with respect to a certain eligibility feature, GIST can be 
validated by verifying if GIST(TP1, PP) > GIST(TP2, PP). However, it is not feasible to obtain TP1 and TP2 
because we have no evidence yet what kinds of trials have better generalizability with respect to a certain eligibility 
feature. Meanwhile, each trial set is affiliated with three different patient populations, i.e., the real-world patient 
population, the target population constructed from eligibility criteria descriptions, and the study population that 
includes all enrolled patients in the trial. Our method for validating the GIST metric is to simulate different patient 
populations that would result in a known generalizability difference with respect to the same trial set and assess if 
the difference of their GIST scores correlates with the expected difference. Therefore, we simulated a patient 
population that has better generalizability than the real-world patient population for the same trial set through 
weighted sampling of the real-world patient population. The relationships of these populations in our simulation-
based validation method are illustrated in Figure 1(b) and their definitions are provided as follows: 

Clinical trial target population (P0): the 
patients being sought as defined in the 
clinical trial eligibility criteria.  

“Real-world” patient population (P1): the 
patients to whom the results of clinical trials 
are intended to be applied. We can only 
approximate its definition given available 
data resources about these patients. 

Weighted “real-world” patient population 
(P2): the patients sampled from the “real-
world” patient population based on the 
percentage of trials considering these patients 
for inclusion. 

Clinical trial study population (P3): the study participants who are actually enrolled in a clinical trial. Compared to 
P1 and P2, the study population P3 maximally (if not perfectly) reflects the target population (P0) because all 
enrolled study subjects should meet the eligibility criteria that define the target population. 

For example, diabetes research may target Type 2 diabetes mellitus (T2DM) patients by defining P0 as “patients 
with HbA1c above 7.5%”, while the real-world T2DM patients (P1) may be those patients whose HbA1c is above 
7.0%, and the clinical trial study population (P3) may be a subset of real-world diabetes patients whose HbA1c is 
above 8.0%. Therefore, P1 subsumes P0, which further subsumes P3. 

In [10], to reveal the population representativeness problem at a research community level, we aggregated multiple 
related clinical trials and used the distribution of trials over HbA1c values to represent the collective target 
population, i.e., the percentage of trials considering patients with a certain HbA1c value. In this work, we created P2 
by sampling real-world patients based upon the percentage of trials considering them, thereby bringing the real-
world patient population (P1) closer to the target population (P0). As such, P2 should be better represented in the 
collective target population (P0) than P1. Using P0 as the target, increasing generalizability will be observed in P1, 
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Figure 1. The conceptual framework for validating GIST. 
(a) (b) 



  

P2, and P3, in order. Therefore, if the GIST scores for them follow GIST(P0,P1) < GIST(P0,P2) < GIST(P0,P3), we 
can conclude that GIST is a valid metric in quantifying the population representativeness of a trial set.  

We first validated the GIST metric using this simulation-based method. Then we compared the GIST scores of trial 
sets that differ in their disease domains, sponsor types, study phases, and study designs. We hypothesized that: 

Hypothesis #1: Weighted “real-world” patient population can serve as a good reference standard for validating 
GIST’s suitability for indicating the population representativeness of a set of related clinical trials, one eligibility-
feature each time.   

Hypothesis #2: GIST correlates with the population representativeness of a set of related trials. 

To profile the patient populations used for GIST evaluation, we used the population health data from the National 
Health and Nutrition Examination Survey (NHANES), a continuous cross-sectional health survey conducted by the 
National Center for Health Statistics of Centers for Disease Control and Prevention (CDC) [12]. NHANES evaluates 
a stratified multistage probability sample of the non-institutionalized population of the United States. The survey 
samples are first interviewed at home, followed by a physical and a laboratory test in a mobile examination center. 
Its rigorous quality control standards ensure national population representativeness and high-quality data collection.  

Figure 2 shows the data collection and analysis pipeline employed in this study. We first extracted patient data from 
the NHANES database downloaded from the CDC website. We then retrieved the clinical trial summary text from 
ClinicalTrials.gov. We extracted and aggregated baseline characteristics of enrolled patients in T2DM trials with 
results. All the data were extracted with R and Python scripts, and subsequently stored in a MySQL database. After 
processing the data, we first evaluated the GIST metric. Then, we used GIST to compare population 
representativeness of trial sets of various characteristics. We will explicate each step as follows: 

 
Figure 2. The data collection and analysis pipeline. 

Step 1: Extracting patient data from NHANES databases 

To ensure the statistical power of the analysis, we identified seven medical conditions in NHANES, each having 
more than 1,000 samples after combining data in multiple survey cycles. They were Type 2 diabetes mellitus 
(T2DM), asthma, arthritis, depression, sleep disorders, heart attack, and stroke. In the following, we will describe 
how we extracted and processed the NHANES data for these seven selected medical conditions. 

T2DM: We combined the results of the Diabetes questionnaire of five continuous survey cycles between 2003 and 
2012 and identified 3,304 diabetics who had their diabetes confirmed by a health professional and one HbA1c 
(Glycohemoglobin) measurement. As NHANES does not distinguish between two subtypes of diabetes, we 
employed a method used by Dodd et al. [13] to further identify 3,082 T2DM patients after excluding 222 samples 
with Type 1 diabetes who were (1) first diagnosed with diabetes before age 30; and (2) taking insulin. The rationale 
is that as one grows older, his/her lifestyle (e.g., dietary habits) will play a more important role in developing 
T2DM. Three quantitative eligibility features that are frequently used in T2DM trials, i.e., age (99.0%), HbA1c 
(53.6%), and Body Mass Index (BMI) (46.6%), were used for GIST evaluation. We combined the laboratory test 
results on HbA1c and examination data on body measures for five continuous survey cycles between 2003 and 
2012. Out of the 3,082 T2DM samples, 2,695 had no missing values for age, HbA1c, and BMI. We used Chi-square 
test on two categorical variables, i.e., “gender” and “ethnicity”, to test the representativeness of these 2,695 patients 
with no missing values for all the 3,082 patients. No statistically significant difference was found (P-value > 0.05). 
Therefore, we concluded that these 2,695 patients is a representative sample of all the T2DM patients in NHANES 
and included them in our further analysis. 

Depression: NHANES started to conduct interviews on depression in the survey cycle of 2005-2006. We combined 
the results of the Depression Screener questionnaire of four continuous survey cycles between 2005 and 2012. The 
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Depression Screener questionnaire uses a 9-item screening instrument that asks questions about the frequency of 
symptoms of depression over the past 2 weeks. For example, participants were asked how frequently they “have 
little interest in doing things” or “feel tired or have little energy.” Every question was rated from “0” to “3”, where 
“0” means “not at all” and “3” means “nearly every day.” Employing a method used by Xiao et al. [14], we 
identified 1,884 depressive participants who have a combined score of 10 or higher for the nine questions. 

Sleep disorders: NHANES started to conduct interviews on sleep disorders in the 2005-2006 survey cycle. We 
combined the results of the Sleep Disorders questionnaire of four continuous survey cycles between 2005 and 2012 
and identified 1,816 participants who were told by a doctor or a health professional to have sleep disorders. 

Asthma, arthritis, heart attack, and stroke: After combing the results of Medical Conditions questionnaire of five 
continuous survey cycles between 2003 and 2012, we identified 7,009, 7,449, 1,235, 1,119 participants who were 
told by a doctor or health professional to have asthma, arthritis, heart attack, and stroke, respectively. It is worth 
noting that NHANES does not provide other laboratory tests to further validate these conditions. 

To account for oversampling, non-response, and post-stratification, NHANES assigned each participant a two-year 
sample weight (WTMEC2YR), which is the number of people in the U.S. national population that each participant 
can represent. According to the analytical guideline of NHANES [15], we calculated eight-year sample weight 
WTMEC8YR (1/4 * WTMEC2YR) for depression and sleep disorders patients, because their data in four survey 
cycles were combined. For the other five conditions, we calculated ten-year sample weight WTMEC10YR (1/5 * 
WTMEC2YR), because data in five survey cycles were combined for them. After applying the normalized sample 
weights in the analysis, the patients in NHANES can represent the U.S. non-institutionalized population in the 
midpoint of the combined survey period.  

Step 2: Retrieving trials data from ClinicalTrials.gov 

To facilitate large-scale systematic analysis of population representativeness of related clinical trials, we have built a 
computable repository of clinical trials called COMPACT, which stores fine-grained eligibility features and 
descriptive characteristics of all the trials in ClinicalTrials.gov [16]. COMPACT indexed trials by medical 
conditions, allowing efficient aggregate analysis of trials on the same condition. Based on COMPACT, we have 
built a Web-based visual analytic tool of eligibility features in clinical trials called VITTA [17]. VITTA allows its 
users to select trials of a particular medical condition, refine the selection of trials by various characteristics, and 
profile the collective target population with a single eligibility feature. 

For each medical condition, from COMPACT we retrieved interventional studies that had their start date falling in 
the survey years of NHANES. Corresponding patient data were obtained. For example, because patient data with 
sleep disorders were obtained from NHANES between 2005 and 2012, we also retrieved interventional studies on 
sleep disorders with the start date between January 2005 and December 2012 from the COMPACT database. 

Step 3: Retrieving a convenience sample of enrolled patients in T2DM trials 

As the study population of enrolled patients should well represent the target population of a trial, the collective study 
population should yield better population representativeness than the “real-world” patient population. To test 
whether GIST score can reflect this expected difference, we retrieved the results data of T2DM trials between 2003 
and 2012 that reported summary data of their enrolled patients in ClinicalTrials.gov. The summary data must report 
the number of participants, mean and standard deviation (SD) value of at least one of age, HbA1c, and BMI to be 
included. We aggregated the mean and SD of age, HbA1c, and BMI separately using the following formula (adapted 
from [18]), where T is the number of studies, 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑚𝑒𝑎𝑛 =  (!"#!!∗!"#$%&_!"#$%&%!"'$!!)!
!!!

!"#$%&_!"#$%&%!"'$!!!
!!!

    (2) 
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Table 1 shows the number of T2DM trials that reported summary data of age, HbA1c, and BMI for their enrolled 
patients, the total enrollments of these trials, and aggregated mean and SD values of age, HbA1c, and BMI, 
respectively. Given that only a small number of trials reported summary data of their enrolled patients in 
ClinicalTrials.gov, these aggregated data represent a convenience sample of enrolled patients in all the T2DM trials. 

 



  

Table 1. The mean and SD of age, HbA1c, and BMI of the convenience sample of enrolled patients in T2DM trials. 

Variable Number of trials Number of patients  Mean SD 
Age  389 198,050 58.3 9.4 
HbA1c  137 62,931 8.2 1.0 
BMI  108 70,678 30.5 5.2       

Step 4: Evaluating GIST using simulation 

From COMPACT, we retrieved 2,731 interventional studies on T2DM with a start date falling between 01/2003 and 
12/2012. The number of T2DM trials specifying permissible values for age, HbA1c, and BMI was 2,702 (99.0%), 
1,463 (53.6%), and 1,274 (46.6%), respectively. We formed one trial set for each of the three features and included 
them for generating the distribution of trials (P0) over age, HbA1c, and BMI, respectively. These distributions were 
used for evaluating the GIST metric. For each feature, we generated three patient samples as follows: 

“Real-world” patient population (P1): A random sample of 10,000 patients from the T2DM patients in NHANES 
using normalized NHANES sample weight with replacement. NHANES sample weight is the number of patients in 
the U.S. national population that one survey participant can represent. Therefore, this sample can represent the “real-
world” T2DM patients. 

Weighted “real-world” patient population (P2): We generated a random sample of 10,000 patients from T2DM 
patients in NHANES considering both NHANES sample weight and the percentage of trials that consider such 
patients. Specifically, we separately normalized NHANES sample weight (i.e., WTMEC10YR) and percentage of 
trials (P0), and then used the average of these two normalized weights to sample the T2DM patients in NHANES. 
As such, the sample of weighted “real-world” patients generated by oversampling “real-world” patients who are 
considered by more trials and under-sampling “real-world” patients who are considered by fewer trials would be 
better represented in the target population of the trials (P0) than the “real-world” patient population (P1). Note that 
the values in both the normalized sample weights and normalized percentages of trials added up to 100%, while the 
sum of values in P0 did not. 

Study population of clinical trials (P3): A random sample of 10,000 enrolled patients generated using Gaussian 
distribution with the mean and SD of the convenience sample of enrolled patients in T2DM trials (from Step 3). 

In the ideal situation, the study population should represent the target population, assuming the enrolled patients 
match the eligibility criteria perfectly. Therefore, P3 should have the best generalizability of the target population 
among P1, P2 and P3. The same trial set should have better population representativeness for P2 than P1. For each 
feature (i.e., age, HbA1c, and BMI), we calculated the GIST scores for three patient samples. Taking sampling 
variability into account, we ran the experiment for 100 times. Note that P0 for each feature remained the same in all 
the experiments, whereas P1, P2, and P3 were generated once for each feature in an experiment. If the calculated 
GIST scores in all the experiments consistently follow GIST(P0,P1) < GIST(P0,P2) < GIST(P0,P3), GIST correlates 
the expected difference of three patient samples and is therefore a valid metric for assessing the population 
representativeness of a given patient population in a given trial set.  

Step 5: Comparing population representativeness of trial sets of various characteristics 

To reveal the population representativeness problem at the research community level, we calculated the GIST score 
of age for each of the seven previously selected conditions: T2DM, depression, asthma, sleep disorders, arthritis, 
heart attack, and stroke. To compare population representativeness of different types of trials, we further performed 
stratification analysis on study phases, sponsor types, and study designs across multiple conditions. We used the 
GIST scores of age for trial sets that differ in these trial characteristics to compare their population 
representativeness. 

Results 

Evaluation results of GIST using simulation 

For each of the three eligibility features (i.e., age, HbA1c, and BMI), we generated three patient samples (i.e., P1, 
P2, and P3, defined in Step 4 of the Methods Section) that have known differences in generalizability for collective 
target population (P0) of the same set of trials in one experiment and ran the same experiment for 100 times. Even 
though the difference between P1 and P2 may be minor if most trials accept broad range of values, the GIST metric 
should still capture the difference. To illustrate the differences among three patient samples, we visualized in Figure 



  

3 the distribution of P1, P2, and P3 against the target population of T2DM trials (P0) for age, HbA1c, and BMI in 
the pilot experiment. The widths of value intervals for age, HbA1c, and BMI are 1, 0.5, and 1, respectively. In each 
sub-figure, the green dot-and-dashed curve represents the target population of T2DM trials, i.e., the percentage of 
trials allowing a value interval. The blue solid curve represents the distribution of patients in the sample of “real-
world” patients (P1) over consecutive non-overlapping value intervals of a feature. The red dotted solid curve 
represents the distribution of patients in the weighted sample of “real-world” patients (P2). The light blue solid 
curve with big dot represents the distribution of patients in the sample of enrolled patients in T2DM trials (P3). 
There are two y-axes: the left one is for the three sample patient populations (i.e., P1, P2, and P3) and the right one 
is for the target population of clinical trials (P0). 

                   (a)  

                  (b)  

                  (c)  

Figure 3. Visualization of three patient populations (P1, P2, and P3) and the target population of T2DM trials (P0) 
with respect to (a) age, (b) HbA1c, and (c) BMI, respectively.  
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As can be seen in Figure 3(a), both distributions of P1 and P2 peak at age 80, which is considered by only about 
40% of trials. The distributions of P1 and P2 are similar in the visualization, but a statistically significant difference 
between them was observed in two-sample Kolmogorov-Smirnov test (test statistic = 0.028 > 0.014 = critical value, 
P-value < 0.05). Figure 3(b) shows the visualization of three patient samples and collective target population 
regarding HbA1c. The distribution of P3 aligns with P0 better than that of P1 and P2. The peak of the distribution of 
P2 stands in between that of P1 and P3, confirming that the same set of trials does have better generalizability for P2 
than P1. Figure 3(c) shows the visualization for BMI. We can see that all three distributions of P1, P2, and P3 peak 
at about 30 kg/m2, where the peak of P2 is higher than that of P1. As BMI value increases from 30 kg/m2, the curve 
of P2 gradually drops below that of P1. The reason is that the weight (i.e., target population) we used to generate P2 
decreases from 30 kg/m2 onwards. In this pilot experiment, the GIST scores of all the three features follow 
GIST(P0,P1) < GIST(P0,P2) < GIST(P0,P3). 

To ensure stability of our evaluation, we ran the aforementioned experiment for 100 times for each eligibility 
feature. Table 2 shows the mean and SD of 100 GIST scores of P1, P2, and P3 for three quantitative eligibility 
features. SD values are very low (between 0.0002 and 0.0029), indicating that the GIST scores for all three features 
consistently followed GIST(P0,P1) < GIST(P0,P2) < GIST(P0,P3) in these experiments. The results were consistent 
with the expected differences in the population representativeness for three patient samples. Thus, we demonstrated 
the validity of GIST at assessing the population representativeness of related clinical trials. We also confirmed our 
Hypothesis #1 that weighted “real-world” patient population could serve as a good reference standard for validating 
GIST’s suitability for indicating the population representativeness of a set of related trials, one eligibility-feature at a 
time.   

Table 2. Mean and SD of GIST(P0,P1), GIST(P0,P2), and GIST(P0,P3) in 100 experiments for each eligibility 
feature ranked in ascending order of mean GIST scores. 

Eligibility 
Features 

Mean of 
GIST(P0,P1) 

SD of 
GIST(P0,P1) 

Mean of 
GIST(P0,P2) 

SD of 
GIST(P0,P2) 

Mean of 
GIST(P0,P3) 

SD of 
GIST(P0,P3) 

HbA1c 0.47 0.0029 0.55 0.0025 0.72 0.0007 
BMI 0.69 0.0020 0.73 0.0019 0.76 0.0005 
Age 0.77 0.0021 0.79 0.0018 0.85 0.0002 

GIST scores of trial sets of various characteristics 

To uncover the population representativeness issue at the research community level, we used GIST to compare the 
population representativeness with respect to age for seven previously chosen medical conditions. Table 3 shows 
the GIST scores of age for these seven medical conditions ranked in ascending order (Column 5). The numbers of 
patients in the U.S. national population (Column 3) are the sum of the normalized sample weights (i.e., 
WTMEC10YR or WTMEC8YR) of the survey participants with the corresponding condition. The GIST score of 
age can assess how the target population of a set of trials using age as an eligibility criterion (Column 4) represents 
the “real-world” patient population (Column 3). We observed that among all the conditions, asthma trials had the 
worst population representativeness (0.54), while heart attack trials had the best population representativeness 
(0.89). The GIST of age for trials on the other five conditions ranged between 0.74 and 0.83, showing relatively 
good population representativeness.  

Table 3. The GIST score of age for seven medical conditions ranked in ascending order. 

Medical 
condition 

Number of samples in 
NHANES (year range) 

# of patients in the U.S. 
national population 

# of trials with age 
(year range) 

GIST of age 

Asthma  7,009 (2003-2012) 42,035,521 1,459 (2003-2012) 0.54 
Sleep disorders 1,816 (2005-2012) 17,517,187    995 (2005-2012) 0.74 
Depression 1,884 (2005-2012) 15,366,622 1,956 (2005-2012) 0.75 
T2DM 2,695 (2003-2012) 15,575,484 2,702 (2003-2012) 0.77 
Arthritis 7,449 (2003-2012) 52,355,612 2,190 (2003-2012) 0.82 
Stroke 1,119 (2003-2012)   6,174,893 1,098 (2003-2012) 0.83 
Heart attack 1,235 (2003-2012)   7,387,760    638 (2003-2012) 0.89 

Roumiantseva et al. have found that industry-sponsored studies differ systematically from government-sponsored 
studies in study type, interventions, and condition studied [19]. We are also interested in exploring the difference of 
population representativeness for trial sets of various characteristics.  



  

Table 4 gives the GIST scores of age for trial sets in different study phases, study sponsors, and study designs on 
seven medical conditions, horizontally ordered in the same order as Table 3. For all the conditions, the GIST score 
of age increases from Phase I to Phase III. This is in accordance with the fact that Phase I trials aim to establish 
initial safety and efficacy profile of a treatment in a small group of patients, while Phase III trials seek to test the 
treatment with a large groups of people to confirm its safety and efficacy.  

According to the GIST scores, industry-sponsored trials have better population representativeness than NIH-
sponsored trials for asthma, sleep disorders, depression, T2DM, and arthritis. In general, randomized trials have a 
slightly better population representativeness than non-randomized trials except for asthma trials. With regards to 
primary purpose (study design), treatment and diagnostic trials have better population representativeness than 
prevention and basic science trials. These results confirmed our Hypothesis #2 that GIST correlates with the 
population representativeness of a set of related trials. 

Table 4. The GIST scores of age for trials in different phases, sponsors, and study designs on seven medical 
conditions. The number of trials is enclosed by parentheses. 

Trial 
Characteristics 

Asthma  Sleep  
 disorders 

Depression T2DM Arthritis Stroke  Heart  
 attack 

GIST score of age (# of trials) 
Study Phase 
      Phase I 0.53 (179) 0.68 (76) 0.67 (229) 0.60 (368) 0.71 (261) 0.75 (183) 0.79 (60) 
      Phase II 0.58 (410) 0.75 (188) 0.72 (408) 0.77 (517) 0.84 (566) 0.84 (319) 0.87 (172) 
      Phase III 0.59 (336) 0.80 (193) 0.81 (384) 0.87 (766) 0.86 (582) 0.85 (212) 0.92 (160) 
      Phase IV 0.52 (231) 0.69 (136) 0.78 (318) 0.80 (484) 0.83 (404) 0.82 (131) 0.93 (173) 
Sponsor Type 
      NIH 0.31 (27) 0.64 (10) 0.65 (44) 0.57 (35) 0.81 (29) 0.86 (27) 1.00 (2) 
      Industry 0.60 (778) 0.80 (287) 0.80 (431) 0.80 (1464) 0.85 (1237) 0.85 (234) 0.92 (145) 
      U.S. Fed 0.45 (6) 0.75 (44) 0.93 (49) 0.81 (22) 0.89 (30) 0.93 (44) 1.00 (2) 
      Other 0.48 (648) 0.72 (654) 0.73 (1432) 0.73 (1181) 0.78 (894) 0.81 (793) 0.89 (489) 
Study Design - Allocation 
     Randomized 0.54 (1217) 0.75 (772) 0.76 (1525) 0.77 (2319) 0.83 (1661) 0.84 (867) 0.90 (554) 
     Non-  
     Randomized 

0.57 (140) 0.70 (93) 0.71 (201) 0.74 (217) 0.80 (295) 0.79 (104) 0.84 (43) 

Study Design – Primary Purpose 
     Treatment 0.56 (1077) 0.75 (767) 0.77 (1485) 0.80 (2043) 0.83 (1872) 0.83 (805) 0.89 (484) 
     Prevention 0.34 (81) 0.73 (24) 0.54 (139) 0.63 (217) 0.84 (62) 0.80 (151) 0.91 (65) 
     Diagnostic 0.56 (57) 0.83 (48) 0.70 (36) 0.77 (40) 0.79 (34) 0.79 (33) 0.95 (42) 
     Basic Science 0.53 (78) 0.57 (50) 0.59 (56) 0.64 (162) 0.66 (56) 0.57 (13) 0.54 (10) 
 

Discussion 

This study validated the effectiveness of GIST at assessing the population representativeness of related clinical 
trials. The GIST scores consistently agreed with the expected differences of population representativeness for three 
population samples across 100 experiments for all three selected eligibility features. We further demonstrated the 
effectiveness of GIST in comparing population representativeness of trial sets that differ in their characteristics such 
as disease domains, sponsor types, study phases, and study designs. Among seven medical conditions, asthma trials 
had the lowest GIST score of age, reflecting the concern in the respiratory medicine research community [20]. 
Meanwhile, the GIST metric was further validated by the increasing GIST scores of age from Phase I to Phase III 
across all the seven conditions. Note that GIST can also assess the population representativeness of a single clinical 
study, as its primary use case of a pharmaceutical company will be to assess the generalizability of a study it is 
currently designing or even a study that it already has completed. 

In this work, we used NHANES to profile the “real-world” patient populations (P1) and weighted “real-world” 
patient populations (P2). Compared with EHR data, NHANES has several advantages. First, its sophisticated 
sampling mechanism ensures the population representativeness at the national level. In contrast, EHR data contain 
mostly diseased patients or patients receiving care and hence may be biased towards certain population subgroups. 
Second, structured survey data are readily analyzable, whereas EHR data often require preprocessing to address data 



  

quality problems. Therefore, NHANES is more cost-effective than EHR data for lightweight population-based 
studies. However, due to the limited data in NHANES, it may not be suitable for longitudinal analysis or studies on 
medical conditions that are not included in the interview questions. 

Limitations 

This study has limitations. We only included seven medical conditions that have a fair amount of patients (over 
1,000) in NHANES. Ideally, more conditions should be analyzed. The self-reported medical conditions in NHANES 
may have resulted in some misclassification of samples. The GIST metric has intrinsic limitations. First, GIST does 
not take into account the enrollment value of a study. Currently, ClinicalTrials.gov has only one field for enrollment, 
which can be planned or actual. Quite a number of trials have not updated the planned enrollment with actual 
enrollment even after completion. Second, it does not consider the geographic location of the trial, which is one 
major factor for patient recruitment. Nevertheless, by aggregating many patients and clinical trials, we have 
minimized the impact of these factors for generating meaningful results in the research community level. Third, the 
GIST metric cannot reveal the reason behind the population representativeness problem. Visualization such as 
Figure 3 can serve as a good complement to GIST for assessing the population representativeness of related trials. 

The long-term goals of this line of research 

As the main purpose of most RCTs is to test the efficacy and safety of a treatment for a certain medical condition in 
people, it is often required to minimize confounding factors that may potentially affect the results. Therefore, it is a 
common practice that RCTs usually recruit patients who do not have comorbidities and are not too old or too sick to 
treat. Instead of enforcing a trial to be generalizable to the broad patient population, the goals of this line of research 
are (1) to improve the transparency of clinical trial eligibility criteria design biases across multiple studies; (2) to 
facilitate evidence-based data-driven precision design of clinical trial eligibility criteria [21]; and (3) to address the 
rising need for patient-centered outcomes research in the clinical trial domain. This information can be provided to 
clinical trial designers to help them better justify the trade-offs between the internal validity and the external validity 
when designing a new trial. This information can also help clinical investigators and policy makers efficiently 
identify population representativeness issues in clinical studies of certain characteristics and take measures 
accordingly. When applying clinical trial eligibility criteria to observational data, one can compare and contrast the 
effects observed between eligible and ineligible patients, which may reveal more profound problems in trial design 
and clinical research in general. 

Future work 

In the future, we plan to use GIST to identify restrictive features among multiple frequently used eligibility features 
among clinical trials of a certain medical condition. We will first leverage controlled terminologies such as 
SNOMED CT to develop structural, semantic, and lexical methods for meaningful aggregation of similar qualitative 
features. Then we will compute GIST scores to identify stringent features (with relatively low GIST scores). In this 
paper, we compared the population representativeness of trials on seven medical conditions with respect to age using 
GIST. However, this method is not efficient when more eligibility features are included in the analysis. Moreover, 
eligibility features may have inherent correlations. For example, a previous study has reported that impaired fasting 
glucose generally increases with age for diabetic patients [22]. Meanwhile, eligibility criteria may be operationalized 
as an interaction of multiple features, e.g., “pregnant female over 40 years old.” In the future, we will investigate 
how to assess the collective population representativeness using multiple eligibility features simultaneously.  

Conclusions 

In this work, we used real-world population-level data to validate a novel metric for quantifying the population 
representativeness of clinical trials. The study results confirmed that the GIST metric is reliable for its purpose. 
These findings suggested the future potential of a systematic approach for providing prognostic tools to facilitate the 
clinical trial design process as well as post hoc evaluations to investigate the generalizability of studies already 
underway or completed. By integrating the real-world experience of patients with the study design attributes of 
existing clinical trials, researchers designing new clinical studies can improve both the efficiency and 
generalizability of their designs with this proactive data-driven approach.  
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